Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1382931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736882

RESUMO

Background: Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods: We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results: We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions: NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.


Assuntos
Gangliosídeos , Células Matadoras Naturais , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Células Tumorais Cultivadas , Evasão Tumoral , Microambiente Tumoral/imunologia
2.
Mol Cancer ; 22(1): 201, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071322

RESUMO

Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Células Matadoras Naturais , Linfócitos T , Neoplasias/terapia , Autofagia
3.
ACS Biomater Sci Eng ; 9(10): 5580-5588, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721169

RESUMO

Interleukin-4 (IL-4) is an immune-modulating therapeutic with growing potential for the treatment of inflammatory diseases. Current challenges of IL-4 therapy include a low serum half-life and pleiotropic activity, suggesting effective targeting of IL-4. To develop an interleukin-4 bioconjugate with rapid targeting to inflammatory disease sites, we report the chemical synthesis, bioconjugation, and in vitro characterization of a murine interleukin-4 (mIL-4) conjugate decorated with a fibroblast activation protein inhibitor (FAPI). The FAPI targeting moiety features 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to allow future biodistribution and imaging studies of the FAPI-mIL-4 bioconjugate. We demonstrated site-specific coupling of mIL-4 and FAPI-DOTA deploying chemo-enzyme and enzyme chemistries with a high purity exceeding 95%. The FAPI-DOTA modified mIL-4 was bioactive with polarization of murine macrophages into the M2 state while maintaining specific binding to FAP on fibroblast cells. Together, these results point to future in vivo use of the FAPI-mIL-4 bioconjugate to assess biodistribution and biological effects in animal models of inflammatory joint disease.

4.
Front Immunol ; 14: 1183668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334356

RESUMO

Background: Melanoma is a lethal skin cancer, and the risk of developing it is increased by exposure to ultraviolet (UV) radiation. The production of cytokines such as interleukin-15 (IL-15), induced by the exposure of skin cells to UV rays, could also promote melanoma development. The aim of this study is to investigate the possible role of Interleukin-15/Interleukin-15 Receptor α (IL-15/IL-15Rα) complexes in melanoma development. Methods: The expression of IL-15/IL-15Rα complexes by melanoma cells was evaluated both ex vivo and in vitro by tissue microarray, PCR, and flow cytometry. The presence of the soluble complex (sIL-15/IL-15Rα) in the plasma of metastatic melanoma patients was detected using an ELISA assay. Subsequently, we investigated the impact of natural killer (NK) cell activation after rIL-2 starvation followed by exposure to the sIL-15/IL-15Rα complex. Finally, by analyzing public datasets, we studied the correlation between IL-15 and IL-15Rα expressions and melanoma stage, NK and T-cell markers, and overall survival (OS). Results: Analysis of a melanoma tissue microarray shows a significant increase in the number of IL-15+ tumor cells from the benign nevi to metastatic melanoma stages. Metastatic melanoma cell lines express a phorbol-12-myristate-13-acetate (PMA)-cleavable membrane-bound IL-15 (mbIL-15), whereas cultures from primary melanomas express a PMA-resistant isoform. Further analysis revealed that 26% of metastatic patients present with consistently high plasmatic levels of sIL-15/IL-15Rα. When the recombinant soluble human IL-15/IL-15Rα complex is added to briefly starved rIL-2-expanded NK cells, these cells exhibit strongly reduced proliferation and levels of cytotoxic activity against K-562 and NALM-18 target cells. The analysis of public gene expression datasets revealed that high IL-15 and IL-15Rα intra-tumoral production correlates with the high levels of expression of CD5+ and NKp46+ (T and NK markers) and significantly correlates with a better OS in stages II and III, but not in stage IV. Conclusions: Membrane-bound and secreted IL-15/IL-15Rα complexes are continuously present during progression in melanoma. It is notable that, although IL-15/IL-15Rα initially promoted the production of cytotoxic T and NK cells, at stage IV promotion of the development of anergic and dysfunctional cytotoxic NK cells was observed. In a subgroup of melanoma metastatic patients, the continuous secretion of high amounts of the soluble complex could represent a novel NK cell immune escape mechanism.


Assuntos
Antineoplásicos , Melanoma , Humanos , Linhagem Celular Tumoral , Interleucina-15/metabolismo , Subunidade alfa de Receptor de Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Células Matadoras Naturais , Melanoma/metabolismo
5.
J Control Release ; 357: 299-308, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958403

RESUMO

Overuse injuries or acute trauma in joints often lead to painful tendinopathy, and pharmacological treatment effects are limited. The site of the disease is hard to reach with drugs, both systemically and through the skin. Therapeutic gases may close this gap, as they permeate easier through tissues than conventional small molecules. We present a patch device releasing the anti-inflammatory gas carbon monoxide (CO) through the skin to the subcutaneous tendons and tissues. CO is chemically generated upon device activation and its design maximizes CO exposure to the underlying skin and protects the patient from all side and degradation products. The patch delivered CO successfully through the intact skin, granting lasting, subcutaneous CO exposure for up to 16 h. Furthermore, the released CO induced the proliferation of fibroblasts and the polarization of monocytes into anti-inflammatory M2 macrophages. In conclusion, the CO-releasing device might open an entirely new treatment option against tendinopathies in case of a positive outcome of future in vivo studies.


Assuntos
Anti-Inflamatórios , Monóxido de Carbono , Humanos , Monóxido de Carbono/metabolismo , Anti-Inflamatórios/química , Macrófagos/metabolismo , Monócitos/metabolismo , Pele/metabolismo
6.
Bioconjug Chem ; 33(1): 97-104, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34967625

RESUMO

Interleukin-4 (IL-4) is a potentially interesting anti-inflammatory therapeutic, which is rapidly excreted. Therefore, serum half-life extension by polymer conjugation is desirable, which may be done by PEGylation. Here, we use PEtOx as an alternative to PEG for bioconjugate engineering. We genetically extended murine IL-4 (mIL-4) with the d-domain of insulin-like growth factor I (IGF-I), a previously identified substrate of transglutaminase (TG) Factor XIIIa (FXIIIa). Thereby, engineered mIL-4 (mIL-4-TG) became an educt for TG catalyzed C-terminal, site-directed conjugation. This was deployed to enzymatically couple an azide group containing peptide sequence to mIL-4, allowing C-terminal bioconjugation of polyethylene glycol or poly(2-ethyl-2-oxazoline). Both bioconjugates had wild-type potency and alternatively polarized macrophages.


Assuntos
Interleucina-4
7.
Pharmaceutics ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218172

RESUMO

Bisindolylmaleimide I (BIM-I) is a competitive pan protein kinase C inhibitor with anti-inflammatory and anti-metastatic properties, suggested to treat inflammatory diseases and various cancer entities. However, despite its therapeutic potential, BIM-I has two major drawbacks, i.e., it has a poor water solubility, and it binds the human ether-à-go-go-related gene (hERG) ion channels, potentially causing deadly arrhythmias. In this case, a targeted delivery of BIM-I is imperative to minimize peripheral side effects. To circumvent these drawbacks BIM-I was encapsulated into nanoparticles prepared from poly(lactic-co-glycolic acid) (PLGA) functionalized by the near-infrared dye DY-635. DY-635 served as an active targeting moiety since it selectively binds the OATP1B1 and OATP1B3 transporters that are highly expressed in liver and cancer cells. PLGA-DY-635 (BIM-I) nanoparticles were produced by nanoprecipitation and characterized using dynamic light scattering, analytical ultracentrifugation, and cryogenic transmission electron microscopy. Particle sizes were found to be in the range of 20 to 70 nm, while a difference in sizes between the drug-loaded and unloaded particles was observed by all analytical techniques. In vitro studies demonstrated that PLGA-DY-635 (BIM-I) NPs prevent the PKC activation efficiently, proving the efficacy of the inhibitor after its encapsulation, and suggesting that BIM-I is released from the PLGA-NPs. Ultimately, our results present a feasible formulation strategy that improved the cytotoxicity profile of BIM-I and showed a high cellular uptake in the liver as demonstrated in vivo by intravital microscopy investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...