Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585777

RESUMO

Cultured beef holds promising potential as an alternative to traditional meat options. While adult stem cells are commonly used as the cell source for cultured beef, their proliferation and differentiation capacities are limited. To produce cultured beef steaks, current manufacturing plans often require the separate preparation of multiple cell types and intricate engineering for assembling them into structured tissues. In this study, we propose and report the co-induction of skeletal muscle, neuronal, and endothelial cells from bovine embryonic stem cells (ESCs) and the self-organization of tissue structures in 2- and 3-dimensional cultures. Bovine myocytes were induced in a stepwise manner through the induction of presomitic mesoderm (PSM) from bovine ESCs. Muscle fibers with sarcomeres appeared within 15 days, displaying calcium oscillations responsive to inputs from co-induced bovine spinal neurons. Bovine endothelial cells were also co-induced via PSM, forming uniform vessel networks inside tissues. Our serum-free, rapid co-induction protocols represent a milestone toward self-organizing beef steaks with integrated vasculature and innervation.

2.
Sci Adv ; 9(51): eadj8540, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134282

RESUMO

Proper placental vascularization is vital for pregnancy outcomes, but assessing it with animal models and human explants has limitations. We introduce a 3D in vitro model of human placenta terminal villi including fetal mesenchyme and vascular endothelium. By coculturing HUVEC, placental fibroblasts, and pericytes in a macrofluidic chip with a flow reservoir, we generate fully perfusable fetal microvessels. Pressure-driven flow facilitates microvessel growth and remodeling, resulting in early formation of interconnected and lasting placental-like vascular networks. Computational fluid dynamics simulations predict shear forces, which increase microtissue stiffness, decrease diffusivity, and enhance barrier function as shear stress rises. Mass spectrometry analysis reveals enhanced protein expression with flow, including matrix stability regulators, proteins associated with actin dynamics, and cytoskeleton organization. Our model provides a powerful tool for deducing complex in vivo parameters, such as shear stress on developing vascularized placental tissue, and holds promise for unraveling gestational disorders related to the vasculature.


Assuntos
Neovascularização Patológica , Placenta , Animais , Gravidez , Humanos , Feminino , Placenta/metabolismo , Perfusão , Neovascularização Patológica/metabolismo , Técnicas de Cocultura , Microvasos/metabolismo
3.
Adv Sci (Weinh) ; 10(35): e2302561, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897317

RESUMO

The mammary gland is a highly vascularized organ influenced by sex hormones including estrogen (E2) and progesterone (P4). Beyond whole-organism studies in rodents or cell monocultures, hormonal effects on the breast microvasculature remain largely understudied. Recent methods to generate 3D microvessels on-chip have enabled direct observation of complex vascular processes; however, these models often use non-tissue-specific cell types, such as human umbilical vein endothelial cells (HUVECs) and fibroblasts from various sources. Here, novel mammary-specific microvessels are generated by coculturing primary breast endothelial cells and fibroblasts under optimized culture conditions. These microvessels are mechanosensitive (to interstitial flow) and require endothelial-stromal interactions to develop fully perfusable vessels. These mammary-specific microvessels are also responsive to exogenous stimulation by sex hormones. When treated with combined E2 and P4, corresponding to the four phases of the menstrual cycle (period, follicular, ovular, and luteal), vascular remodeling and barrier function are altered in a phase-dependent manner. The presence of high E2 (ovulation) promotes vascular growth and remodeling, corresponding to high depletion of proangiogenic factors, whereas high P4 concentrations (luteal) promote vascular regression. The effects of combined E2 and P4 hormones are not only dose-dependent but also tissue-specific, as are shown by similarly treating non-tissue-specific HUVEC microvessels.


Assuntos
Ciclo Menstrual , Progesterona , Feminino , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Hormônios/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Microvasos/metabolismo
4.
Methods Mol Biol ; 2608: 409-423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653720

RESUMO

Investigating the complex cellular interactions of the placenta has remained, until now, a challenge in the field. Given the ethical limitations of studying human placentae, and the interspecies differences that exist between mammals, in vitro models are a valuable tool for investigating developmental and pathologic processes related to the human placenta. A number of in vitro models have been recently employed to investigate various aspects of placental development, with many focusing on the maternal-fetal interface including the trophoblasts and an endothelial barrier. One critical aspect in mimicking the physiology of the placenta is to include perfusable microvessels. As this organ is highly vascularized, it is pertinent to represent the exchange of oxygen and nutrients from the maternal blood to the embedded vessels of the fetus. Using hydrogel-laden microfluidics, it is now possible to bioengineer these and other microvessels in a reproducible manner. By using HUVEC, fetal-like vessels can be generated on a chip and can be studied in a controlled manner. This chapter introduces the concept of generating a triculture vasculature on-chip system, which can be employed to study placental pericyte-endothelial interactions. We describe strategies for generating the vessels on-chip, as well as for quantifying vascular morphology and function. This methodology allows for unique microvessel-related biological questions to be addressed, including how stromal cells impact vascular remodeling over time.


Assuntos
Pericitos , Placenta , Animais , Gravidez , Feminino , Humanos , Trofoblastos , Microvasos/patologia , Remodelação Vascular/fisiologia , Mamíferos
5.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35485205

RESUMO

Seasonal modifications in the structure of cellular membranes occur as an adaptive measure to withstand exposure to prolonged environmental change. Little is known about whether such changes occur independently of external cues, such as photoperiod or temperature, or how they may impact the central nervous system. We compared membrane properties of neurons isolated from the retina of goldfish (Carassius auratus), an organism well adapted to extreme environmental change, during the summer and winter months. Goldfish were maintained in a facility under constant environmental conditions throughout the year. Analysis of whole-retina phospholipid composition using mass spectrometry-based lipidomics revealed a twofold increase in phosphatidylethanolamine species during the winter, suggesting an increase in cell membrane fluidity. Atomic force microscopy was used to produce localized, nanoscale-force deformation of neuronal membranes. Measurement of Young's modulus indicated increased membrane-cortical stiffness (or decreased elasticity) in neurons isolated during the winter. Voltage-clamp electrophysiology was used to assess physiological changes in neurons between seasons. Winter neurons displayed a hyperpolarized reversal potential (Vrev) and a significantly lower input resistance (Rin) compared with summer neurons. This was indicative of a decrease in membrane excitability during the winter. Subsequent measurement of intracellular Ca2+ activity using Fura-2 microspectrofluorometry confirmed a reduction in action potential activity, including duration and action potential profile, in neurons isolated during the winter. These studies demonstrate chemical and biophysical changes that occur in retinal neurons of goldfish throughout the year without exposure to seasonal cues, and suggest a novel mechanism of seasonal regulation of retinal activity.


Assuntos
Carpa Dourada , Neurônios Retinianos , Potenciais de Ação , Animais , Carpa Dourada/fisiologia , Fotoperíodo , Estações do Ano
6.
Biomaterials ; 280: 121248, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794827

RESUMO

Hemodynamics play a central role in the health and disease of the coronary and peripheral vascular systems. Vessel-lining endothelial cells are known mechanosensors, responding to disturbances in flow - with mechanosensitivity hypothesized to change in response to metabolic demands. The health of our smallest microvessels have been lauded as a prognostic marker for cardiovascular health. Yet, despite numerous animal models, studying these small vessels has proved difficult. Microfluidic technologies have allowed a number of 3D vascular models to be developed and used to investigate human vessels. Here, two such systems are employed for examining 1) interstitial flow effects on neo-vessel formation, and 2) the effects of flow-conditioning on vascular remodeling following sustained static culture. Interstitial flow is shown to enhance early vessel formation via significant remodeling of vessels and interconnected tight junctions of the endothelium. In formed vessels, continuous flow maintains a stable vascular diameter and causes significant remodeling, contrasting the continued anti-angiogenic decline of statically cultured vessels. This study is the first to couple complex 3D computational flow distributions and microvessel remodeling from microvessels grown on-chip (exposed to flow or no-flow conditions). Flow-conditioned vessels (WSS < 1Pa for 30 µm vessels) increase endothelial barrier function, result in significant changes in gene expression and reduce reactive oxygen species and anti-angiogenic cytokines. Taken together, these results demonstrate microvessel mechanosensitivity to flow-conditioning, which limits deleterious vessel regression in vitro, and could have implications for future modeling of reperfusion/no-flow conditions.


Assuntos
Capilares , Células Endoteliais , Animais , Hemodinâmica , Humanos , Microfluídica , Microvasos
7.
Front Physiol ; 12: 735915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690810

RESUMO

Fibrosis, a hallmark of many cardiac and pulmonary diseases, is characterized by excess deposition of extracellular matrix proteins and increased tissue stiffness. This serious pathologic condition is thought to stem majorly from local stromal cell activation. Most studies have focused on the role of fibroblasts; however, the endothelium has been implicated in fibrosis through direct and indirect contributions. Here, we present a 3D vascular model to investigate vessel-stroma crosstalk in normal conditions and following induced fibrosis. Human-induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) are co-cultured with (and without) primary human cardiac and lung fibroblasts (LFs) in a microfluidic device to generate perfusable microvasculature in cardiac- and pulmonary-like microenvironments. Endothelial barrier function, vascular morphology, and matrix properties (stiffness and diffusivity) are differentially impacted by the presence of stromal cells. These vessels (with and without stromal cells) express inflammatory cytokines, which could induce a wound-healing state. Further treatment with transforming growth factor-ß (TGF-ß) induced varied fibrotic phenotypes on-chip, with LFs resulting in increased stiffness, lower MMP activity, and increased smooth muscle actin expression. Taken together, our work demonstrates the strong impact of stromal-endothelial interactions on vessel formation and extravascular matrix regulation. The role of TGF-ß is shown to affect co-cultured microvessels differentially and has a severe negative impact on the endothelium without stromal cell support. Our human 3D in vitro model has the potential to examine anti-fibrotic therapies on patient-specific hiPSCs in the future.

8.
Micromachines (Basel) ; 12(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34442506

RESUMO

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal-fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.

9.
Front Bioeng Biotechnol ; 9: 694218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249889

RESUMO

Breast cancer is the second leading cause of death among women worldwide, and while hormone receptor positive subtypes have a clear and effective treatment strategy, other subtypes, such as triple negative breast cancers, do not. Development of new drugs, antibodies, or immune targets requires significant re-consideration of current preclinical models, which frequently fail to mimic the nuances of patient-specific breast cancer subtypes. Each subtype, together with the expression of different markers, genetic and epigenetic profiles, presents a unique tumor microenvironment, which promotes tumor development and progression. For this reason, personalized treatments targeting components of the tumor microenvironment have been proposed to mitigate breast cancer progression, particularly for aggressive triple negative subtypes. To-date, animal models remain the gold standard for examining new therapeutic targets; however, there is room for in vitro tools to bridge the biological gap with humans. Tumor-on-chip technologies allow for precise control and examination of the tumor microenvironment and may add to the toolbox of current preclinical models. These new models include key aspects of the tumor microenvironment (stroma, vasculature and immune cells) which have been employed to understand metastases, multi-organ interactions, and, importantly, to evaluate drug efficacy and toxicity in humanized physiologic systems. This review provides insight into advanced in vitro tumor models specific to breast cancer, and discusses their potential and limitations for use as future preclinical patient-specific tools.

10.
Biomaterials ; 268: 120592, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348261

RESUMO

Microfluidic technology has been extensively applied to model the functional units of human organs and tissues. Since vasculature is a key component of any functional tissue, a variety of techniques to mimic vasculature in vitro have been developed to address complex physiological and pathological processes in 3D tissues. Herein, we developed a novel, in vitro, microfluidic-based model to probe microvasculature growth into and across implanted porous membranes. Using ePTFE and polycarbonate as examples, we characterize the vascularization potential of these thin porous membranes using this device. This tool will allow for the assessment of porous materials early in their development, prior to their use for encapsulating implants or drugs, while minimizing the need for animal studies. Employing quantitative morphometric analysis and measurements of vascular permeability, we demonstrate our model to be an effective platform for evaluation of angiogenic potential of an implanted membrane biomaterial. Results show that endothelial cells can either migrate as single cells or form continuous sprouts across porous membranes, which is a material structure-dependent behavior. Our model is advantageous over conventional Transwell assays as it is amenable to quantitative assessment of vascular sprouting in 3D, and in contrast to animal models it can be employed more efficiently and with real-time assessment capabilities. This new tool could be applied either to test the suitability of a wide range of biomaterials for implantation or to screen different pro-angiogenic factors for therapeutic applications, and will advance the design of new biomaterials.


Assuntos
Células Endoteliais , Neovascularização Patológica , Animais , Materiais Biocompatíveis , Humanos , Microvasos , Neovascularização Fisiológica , Porosidade
11.
APL Bioeng ; 4(4): 046102, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33195960

RESUMO

Throughout the process of vascular growth and remodeling, the extracellular matrix (ECM) concurrently undergoes significant changes due to proteolytic activity-regulated by both endothelial and surrounding stromal cells. The role of matrix metalloproteinases has been well-studied in the context of vascular remodeling, but other proteases, such as cysteine cathepsins, could also facilitate ECM remodeling. To investigate cathepsin-mediated proteolysis in vascular ECM remodeling, and to understand the role of shear flow in this process, in vitro microvessels were cultured in previously designed microfluidic chips and assessed by immunostaining, zymography, and western blotting. Primary human vessels (HUVECs and fibroblasts) were conditioned by continuous fluid flow and/or small molecule inhibitors to probe cathepsin expression and activity. Luminal flow (in contrast to static culture) decreases the activity of cathepsins in microvessel systems, despite a total protein increase, due to a concurrent increase in the endogenous inhibitor cystatin C. Observations also demonstrate that cathepsins mostly co-localize with fibroblasts, and that fibrin (the hydrogel substrate) may stabilize cathepsin activity in the system. Inhibitor studies suggest that control over cathepsin-mediated ECM remodeling could contribute to improved maintenance of in vitro microvascular networks; however, further investigation is required. Understanding the role of cathepsin activity in in vitro microvessels and other engineered tissues will be important for future regenerative medicine applications.

12.
Development ; 147(9)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366376

RESUMO

In February 2020, the European Molecular Biology Laboratory (EMBL) and the Institute for Bioengineering of Catalonia (IBEC) joined forces to unite researchers from all over the globe to discuss emerging topics in 'Engineering Multicellular Systems'. As we review here, key themes that arose throughout the meeting included the ethics of organoids in developmental biology, bottom-up versus top-down models, tissue organizing principles, and the future of improving these systems to better mimic the natural world.


Assuntos
Bioengenharia/métodos , Biologia Sintética/métodos , Animais , Biologia do Desenvolvimento/métodos , Humanos , Organoides , Engenharia Tecidual/métodos
13.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33692661

RESUMO

Drug discovery and efficacy in cancer treatments are limited by the inability of pre-clinical models to predict successful outcomes in humans. Limitations remain partly due to their lack of a physiologic tumor microenvironment (TME), which plays a considerable role in drug delivery and tumor response to therapy. Chemotherapeutics and immunotherapies rely on transport through the vasculature, via the smallest capillaries and stroma to the tumor, where passive and active transport processes are at play. Here, a 3D vascularized tumor on-chip is used to examine drug delivery in a relevant TME within a large bed of perfusable vasculature. This system demonstrates highly localized pathophysiological effects of two tumor spheroids (Skov3 and A549) which cause significant changes in vessel density and barrier function. Paclitaxel (Taxol) uptake is examined through diffusivity measurements, functional efflux assays and accumulation of the fluorescent-conjugated drug within the TME. Due to vascular and stromal contributions, differences in the response of vascularized tumors to Taxol (shrinkage and CD44 expression) are apparent compared with simpler models. This model specifically allows for examination of spatially resolved tumor-associated endothelial dysfunction, likely improving the representation of in vivo drug distribution, and has potential for development into a more predictable model of drug delivery.

14.
Adv Sci (Weinh) ; 6(23): 1900878, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832308

RESUMO

Placental vasculopathies are associated with a number of pregnancy-related diseases, including pre-eclampsia (PE)-a leading cause of maternal-fetal morbidity and mortality worldwide. Placental presentations of PE are associated with endothelial dysfunction, reduced vessel perfusion, white blood cell infiltration, and altered production of angiogenic factors within the placenta (a candidate mechanism). Despite maintaining vascular quiescence in other tissues, how pericytes contribute to vascular growth and signaling in the placenta remains unknown. Here, pericytes are hypothesized to play a detrimental role in the pathogenesis of placental vascular growth. A perfusable triculture model is developed, consisting of human endothelial cells, fibroblasts, and pericytes, capable of recapitulating growth and remodeling in a system that mimics inflamed placental microvessels. Placental pericytes are shown to contribute to growth restriction of microvessels over time, an effect that is strongly regulated by vascular endothelial growth factor and Angiopoietin/Tie2 signaling. Furthermore, this model is capable of recapitulating essential processes including tumor necrosis factor alpha (TNFα)-mediated vascular leakage and leukocyte infiltration, both important aspects associated with placental PE. This placental vascular model highlights that an imbalance in endothelial-pericyte crosstalk can play a critical role in the development of vascular pathology and associated diseases.

15.
Biomaterials ; 212: 115-125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112823

RESUMO

Recent therapeutic success of large-molecule biologics has led to intense interest in assays to measure with precision their transport across the vascular endothelium and into the target tissue. Most current in vitro endothelial models show unrealistically large permeability coefficients due to a non-physiological paracellular transport. Thus, more advanced systems are required to better recapitulate and discern the important contribution of transcellular transport (transcytosis), particularly of pharmaceutically-relevant proteins. Here, a robust platform technology for the measurement of transport through a human endothelium is presented, which utilizes in vitro microvascular networks (MVNs). The self-assembled MVNs recapitulate the morphology and junctional complexity of in vivo capillaries, and express key endothelial vesicular transport proteins. This results in measured permeabilities to large molecules comparable to those observed in vivo, which are orders of magnitude lower than those measured in transwells. The permeability of albumin and immunoglobulin G (IgG), biopharmaceutically-relevant proteins, is shown to occur primarily via transcytosis, with passage of IgG regulated by the receptor FcRn. The physiological relevance of the MVNs make it a valuable tool to assess the distribution of biopharmaceuticals into tissues, and may be used to prioritize candidate molecules from this increasingly important class of therapeutics.


Assuntos
Permeabilidade Capilar/fisiologia , Dispositivos Lab-On-A-Chip , Microcirculação/fisiologia , Proteínas/metabolismo , Albuminas/metabolismo , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunoglobulina G/metabolismo , Microvasos/fisiologia , Perfusão , Receptores Fc/metabolismo , Transcitose
16.
J Tissue Eng Regen Med ; 13(4): 612-624, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771272

RESUMO

Endothelial progenitor cells and human mesenchymal stem cells (hMSCs) have shown great regenerative potential to repair damaged tissue; however, their injection in vivo results in low retention and poor cell survival. Early clinical research has focussed on cell encapsulation to improve viability and integration of delivered cells. However, this strategy has been limited by the inability to reproduce large volumes of standardized microcapsules and the lack of information on cell-specific egress and timed release from hydrogel microcapsules. Here, we address both of these limitations. First, we use a droplet microfluidic platform to generate monodisperse agarose microcapsules, and second we encapsulate and characterize egress of therapeutically relevant cells (human umbilical vein endothelial cells, endothelial progenitor cells, and hMSCs). With increased temporal resolution, we demonstrate distinct differences in egress between cell types. Importantly, therapeutic cells (hMSCs) egress quickly, in <6 hr following encapsulation. Further, we examined potential escape mechanisms and showed that proliferation can be exploited by cells for microcapsule translocation. We also systematically characterized the egress of fibroblasts (as model cells) following alterations to the microcapsules. Specifically, we show that microcapsule size and hydrogel density impact cell egress efficiency. Overall, our results demonstrate the need for characterization of cell-specific egress and tuning of the cocoon microenvironment prior to delivery, for timely release and successful engraftment.


Assuntos
Cápsulas/química , Movimento Celular , Células Progenitoras Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Ratos Sprague-Dawley
17.
Regen Med ; 12(3): 285-302, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28318376

RESUMO

Microfluidics is invaluable for studying microvasculature, development of organ-on-chip models and engineering microtissues. Microfluidic design can cleverly control geometry, biochemical gradients and mechanical stimuli, such as shear and interstitial flow, to more closely mimic in vivo conditions. In vitro vascular networks are generated by two distinct approaches: via endothelial-lined patterned channels, or by self-assembled networks. Each system has its own benefits and is amenable to the study of angiogenesis, vasculogenesis and cancer metastasis. Various techniques are employed in order to generate rapid perfusion of these networks within a variety of tissue and organ-mimicking models, some of which have shown recent success following implantation in vivo. Combined with tuneable hydrogels, microfluidics holds great promise for drug screening as well as in the development of prevascularized tissues for regenerative medicine.


Assuntos
Endotélio Vascular/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Animais , Endotélio Vascular/patologia , Humanos , Neoplasias/patologia , Neovascularização Patológica/patologia
18.
Soft Matter ; 13(3): 567-577, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27942684

RESUMO

It is vital that cells respond rapidly to mechanical cues within their microenvironment through changes in cell shape and volume, which rely upon the mechanical properties of cells' highly interconnected cytoskeletal networks and intracellular fluid redistributions. While previous research has largely investigated deformation mechanics, we now focus on the immediate cell-shape recovery response following mechanical perturbation by inducing large, local, and reproducible cellular deformations using AFM. By continuous imaging within the plane of deformation, we characterize the membrane and cortical response of HeLa cells to unloading, and model the recovery via overdamped viscoelastic dynamics. Importantly, the majority (90%) of HeLa cells recover their cell shape in <1 s. Despite actin remodelling on this time scale, we show that cell-shape recovery time is not affected by load duration, nor magnitude for untreated cells. To further explore this rapid recovery response, we expose cells to cytoskeletal destabilizers and osmotic shock conditions, which uncovers the interplay between actin and osmotic pressure. We show that the rapid dynamics of recovery depend crucially on intracellular pressure, and provide strong evidence that cortical actin is the key regulator in the cell-shape recovery processes, in both cancerous and non-cancerous epithelial cells.

19.
Sci Rep ; 6: 21300, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892269

RESUMO

Physical forces arising in the extra-cellular environment have a profound impact on cell fate and gene regulation; however the underlying biophysical mechanisms that control this sensitivity remain elusive. It is hypothesized that gene expression may be influenced by the physical deformation of the nucleus in response to force. Here, using 3T3s as a model, we demonstrate that extra-cellular forces cause cell nuclei to rapidly deform (<1 s) preferentially along their shorter nuclear axis, in an anisotropic manner. Nuclear anisotropy is shown to be regulated by the cytoskeleton within intact cells, with actin and microtubules resistant to orthonormal strains. Importantly, nuclear anisotropy is intrinsic, and observed in isolated nuclei. The sensitivity of this behaviour is influenced by chromatin organization and lamin-A expression. An anisotropic response to force was also highly conserved amongst an array of examined nuclei from differentiated and undifferentiated cell types. Although the functional purpose of this conserved material property remains elusive, it may provide a mechanism through which mechanical cues in the microenvironment are rapidly transmitted to the genome.


Assuntos
Núcleo Celular/metabolismo , Mecanotransdução Celular/fisiologia , Modelos Teóricos , Estresse Mecânico , Células 3T3 , Animais , Anisotropia , Citoesqueleto/metabolismo , Camundongos
20.
J R Soc Interface ; 12(104): 20140970, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25589563

RESUMO

Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved.


Assuntos
Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica , Actinas/química , Animais , Anisotropia , Citoesqueleto/metabolismo , Elasticidade , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Células HeLa , Humanos , Camundongos , Nanotecnologia , Polímeros/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...