Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Phys Sci ; 5(6): 102021, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947181

RESUMO

In colloids, the shape influences the function. In silica, straight nanorods have already been synthesized from water-in-oil emulsions. By contrast, curly silica nanofibers have been less reported because the underlying growth mechanism remains unexplored, hindering further morphology control for applications. Herein, we describe the synthetic protocol for silica nanofibers with a tunable curliness based on the control of the water-in-oil emulsion droplets. Systematically decreasing the droplet size and increasing their contact angle, the Brownian motion of the droplets intensifies during the silica growth, thus increasing the random curliness of the nanofibers. This finding is supported by simplistic theoretical arguments and experimentally verified by varying the temperature to finely tune the curliness. Assembling these nanofibers toward porous disordered films enhances multiple scattering in the visible range, resulting in increased whiteness in contrast to films constructed by spherical and rod-like building units, which can be useful for, e.g., coatings and pigments.

2.
Chem Rev ; 123(23): 12595-12756, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38011110

RESUMO

Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.

3.
Nat Photonics ; 17(6): 485-493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287680

RESUMO

A fundamental question regarding light scattering is how whiteness, generated from multiple scattering, can be obtained from thin layers of materials. This challenge arises from the phenomenon of optical crowding, whereby, for scatterers packed with filling fractions higher than ~30%, reflectance is drastically reduced due to near-field coupling between the scatterers. Here we show that the extreme birefringence of isoxanthopterin nanospheres overcomes optical crowding effects, enabling multiple scattering and brilliant whiteness from ultra-thin chromatophore cells in shrimp. Strikingly, numerical simulations reveal that birefringence, originating from the spherulitic arrangement of isoxanthopterin molecules, enables intense broadband scattering almost up to the maximal packing for random spheres. This reduces the thickness of material required to produce brilliant whiteness, resulting in a photonic system that is more efficient than other biogenic or biomimetic white materials which operate in the lower refractive index medium of air. These results highlight the importance of birefringence as a structural variable to enhance the performance of such materials and could contribute to the design of biologically inspired replacements for artificial scatterers like titanium dioxide.

4.
Adv Mater ; 35(34): e2207923, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36482805

RESUMO

Thermal or solvent annealing is commonly employed to enhance phase separation and remove defects in block copolymer (BCP) films, leading to well-resolved nanostructures. Annealing is of particular importance for photonic BCP materials, where large, well-ordered lamellar domains are required to generate strong reflections at visible wavelengths. However, such strategies have not been considered for porous BCP systems, such as inverse photonic glasses, where the structure (and thus the optical response) is no longer defined solely by the chemical compatibility of the blocks, but by the size and arrangement of voids within the BCP matrix. In this study, a demonstration of how the concept of "thermal annealing" can be applied to bottlebrush block copolymer (BBCP) microparticles with a photonic glass architecture is presented, enabling their coloration to be tuned from blue to red. By comparing biocompatible BBCPs with similar composition, but different thermal behavior, it is shown that this process is driven by both a temperature-induced softening of the BBCP matrix (i.e., polymer mobility) and the absence of microphase separation (enabling diffusion-induced swelling of the pores). Last, this concept is applied toward the production of a thermochromic patterned hydrogel, exemplifying the potential of such responsive biocompatible photonic-glass pigments toward smart labeling or anticounterfeiting applications.

5.
Commun Phys ; 6(1): 137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665411

RESUMO

Maximizing the scattering of visible light within disordered nano-structured materials is essential for commercial applications such as brighteners, while also testing our fundamental understanding of light-matter interactions. The progress in the research field has been hindered by the lack of understanding how different structural features contribute to the scattering properties. Here we undertake a systematic investigation of light scattering in correlated disordered structures. We demonstrate that the scattering efficiency of disordered systems is mainly determined by topologically invariant features, such as the filling fraction and correlation length, and residual variations are largely accounted by the surface-averaged mean curvature of the systems. Optimal scattering efficiency can thus be obtained from a broad range of disordered structures, especially when structural anisotropy is included as a parameter. These results suggest that any disordered system can be optimised for whiteness and give comparable performance, which has far-reaching consequences for the industrial use of low-index materials for optical scattering.

6.
Angew Chem Int Ed Engl ; 61(34): e202206562, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723924

RESUMO

To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.


Assuntos
Fótons , Plásticos , Norbornanos , Polietilenoglicóis , Polímeros
7.
Nat Commun ; 13(1): 2657, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550506

RESUMO

The transfer of chirality across length-scales is an intriguing and universal natural phenomenon. However, connecting the properties of individual building blocks to the emergent features of their resulting large-scale structure remains a challenge. In this work, we investigate the origins of mesophase chirality in cellulose nanocrystal suspensions, whose self-assembly into chiral photonic films has attracted significant interest. By correlating the ensemble behaviour in suspensions and films with a quantitative morphological analysis of the individual nanoparticles, we reveal an inverse relationship between the cholesteric pitch and the abundance of laterally-bound composite particles. These 'bundles' thus act as colloidal chiral dopants, analogous to those used in molecular liquid crystals, providing the missing link in the hierarchical transfer of chirality from the molecular to the colloidal scale.


Assuntos
Cristais Líquidos , Nanopartículas , Celulose/química , Cristais Líquidos/química , Nanopartículas/química , Óptica e Fotônica , Suspensões
8.
Angew Chem Weinheim Bergstr Ger ; 134(34): e202206562, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38504795

RESUMO

To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.

9.
ACS Nano ; 14(4): 4829-4838, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32243133

RESUMO

Topology and defects are of fundamental importance for ordered structures on all length scales. Despite extensive research on block copolymer self-assembly in solution, knowledge about topological defects and their effect on nanostructure formation has remained limited. Here, we report on the self-assembly of block copolymer discs and polymersomes with a cylinder line pattern on the surface that develops specific combinations of topological defects to satisfy the Euler characteristics for closed spheres as described by Gauss-Bonnet theorem. The dimension of the line pattern allows the direct visualization of defect emergence, evolution, and annihilation. On discs, cylinders either form end-caps that coincide with λ+1/2 disclinations or they bend around τ+1/2 disclinations in 180° turns (hairpin loops). On polymersomes, two λ+1/2 defects connect into three-dimensional (3D) Archimedean spirals, while two τ+1/2 defects form 3D Fermat spirals. Electron tomography reveals two complementary line patterns on the inside and outside of the polymersome membrane, where λ+1/2 and τ+1/2 disclinations always eclipse on opposing sides ("defect communication"). Attractive defects are able to annihilate with each other into +1 disclinations and stabilize anisotropic polymersomes with sharp tips through screening of high-energy curvature. This study fosters our understanding of the behavior of topological defects in self-assembled polymer materials and aids in the design of polymersomes with preprogrammed shapes governed by synthetic block length and topological rules.

11.
Biomacromolecules ; 20(12): 4546-4562, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31697482

RESUMO

Macromolecular architecture plays an important role in the self-assembly process of block copolymer amphiphiles. Herein, two series of stimuli-responsive amphiphilic 3-miktoarm star hybrid terpolypeptides and their corresponding linear analogues were synthesized exhibiting the same overall composition and molecular weight but different macromolecular architecture. The macromolecular architecture was found to be a key parameter in defining the morphology of the nanostructures formed in aqueous solutions as well as to alter the self-assembly behavior of the polymers independently of their composition. In addition, it was found that the assemblies prepared from the star-shaped polymers showed superior tolerance against enzymatic degradation due to the increased corona block density on the outer surface of the nanoparticles. Encapsulation of the hydrophobic anticancer drug Everolimus resulted in the formation of intriguing non-spherical and non-symmetric pH-responsive nanostructures, such as "stomatocytes" and "multi-compartmentalized suprapolymersomes", while the pH-triggered release of the drug was also investigated. Owing to the similarities of the developed "stomatocytes" with red blood cells, in combination with their pH-responsiveness and superior stability over enzymatic degradation, they are expected to present advanced drug delivery properties and have the ability to bypass several extra- and intracellular barriers to reach and effectively treat cancer cells.


Assuntos
Antineoplásicos , Everolimo , Hidrogéis , Nanopartículas/química , Peptídeos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Everolimo/química , Everolimo/farmacocinética , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacocinética , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacocinética
12.
Angew Chem Int Ed Engl ; 56(51): 16186-16190, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29105938

RESUMO

Fluorophobic-driven assemblies of gold nanomaterials were stabilized into water-dispersible fluorous supraparticles by the film-forming protein hydrophobin II. The strategy makes use of fluorous nanomaterials of different dimensions to engineer size and inner functionalization of the resulting confined space. The inner fluorous compartments allow efficient encapsulation and transport of high loadings of partially fluorinated drug molecules in water.


Assuntos
Benzoxazinas/química , Celecoxib/química , Flúor/química , Leflunomida/química , Alcinos , Ciclopropanos , Ouro/química , Halogenação , Substâncias Macromoleculares/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Água/química
13.
Angew Chem Int Ed Engl ; 56(23): 6473-6477, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28452396

RESUMO

The synthesis and spontaneous, reversible supracolloidal hydrogen bond-driven self-assembly of cobalt nanoparticles (CoNPs) into hollow shell-like capsids and their directed assembly to higher order superstructures is presented. CoNPs and capsids form in one step upon mixing dicobalt octacarbonyl (Co2 CO8 ) and p-aminobenzoic acid (pABA) in 1,2-dichlorobenzene using heating-up synthesis without additional catalysts or stabilizers. This leads to pABA capped CoNPs (core ca. 5 nm) with a narrow size distribution. They spontaneously assemble into tunable spherical capsids (d≈50-200 nm) with a few-layered shells, as driven by inter-nanoparticle hydrogen bonds thus warranting supracolloidal self-assembly. The capsids can be reversibly disassembled and reassembled by controlling the hydrogen bonds upon heating or solvent exchanges. The superparamagnetic nature of CoNPs allows magnetic-field-directed self-assembly of capsids to capsid chains due to an interplay of induced dipoles and inter-capsid hydrogen bonds. Finally, self-assembly on air-water interface furnishes lightweight colloidal framework films.

14.
Angew Chem Int Ed Engl ; 55(52): 16035-16038, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27879034

RESUMO

We report supracolloidal self-assembly of atomically precise and strictly monodisperse gold nanoclusters involving p-mercaptobenzoic acid ligands (Au102 -pMBA44 ) under aqueous conditions into hexagonally packed monolayer-thick two-dimensional facetted colloidal crystals (thickness 2.7 nm) and their bending to closed shells leading to spherical capsids (d ca. 200 nm), as controlled by solvent conditions. The 2D colloidal assembly is driven in template-free manner by the spontaneous patchiness of the pMBA ligands around the Au102 -pMBA44 nanoclusters preferably towards equatorial plane, thus promoting inter-nanocluster hydrogen bonds and high packing to planar sheets. More generally, the findings encourage to explore atomically precise nanoclusters towards highly controlled colloidal self-assemblies.

15.
Nat Commun ; 7: 12097, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27352897

RESUMO

Block copolymers self-assemble into a variety of nanostructures that are relevant for science and technology. While the assembly of diblock copolymers is largely understood, predicting the solution assembly of triblock terpolymers remains challenging due to complex interplay of block/block and block/solvent interactions. Here we provide guidelines for the self-assembly of linear ABC triblock terpolymers into a large variety of multicompartment nanostructures with C corona and A/B cores. The ratio of block lengths NC/NA thereby controls micelle geometry to spheres, cylinders, bilayer sheets and vesicles. The insoluble blocks then microphase separate to core A and surface patch B, where NB controls the patch morphology to spherical, cylindrical, bicontinuous and lamellar. The independent control over both parameters allows constructing combinatorial libraries of unprecedented solution nanostructures, including spheres-on-cylinders/sheets/vesicles, cylinders-on-sheets/vesicles, and sheets/vesicles with bicontinuous or lamellar membrane morphology (patchy polymersomes). The derived parameters provide a logical toolbox towards complex self-assemblies for soft matter nanotechnologies.

16.
Adv Mater ; 28(26): 5262-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27152434

RESUMO

The right-handed twist along aqueous dispersed cellulose nanocrystals allows right-handed chiral plasmonics upon electrostatic binding of gold nanoparticles in dilute environment, through tuning the particle sizes and concentrations. Simulations using nanoparticle coordinates from cryo-electron tomography confirm the experimental results. The finding suggests generalization for other chiral and helical colloidal templates for nanoscale chiral plasmonics.

17.
Macromol Rapid Commun ; 37(3): 215-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637124

RESUMO

Gold nanoparticles (AuNP) with pyridyl end-capped polystyrenes (PS-4VP) as "quasi-monodentate" ligands self-assemble into ordered PS-4VP/AuNP nanostructures with 3D hexagonal spatial order in the dried solid state. The key for the formation of these ordered structures is the modulation of the ratio AuNP versus ligands, which proves the importance of ligand design and quantity for the preparation of novel ordered polymer/metal nanoparticle conjugates. Although the assemblies of PS-4VP/AuNP in dispersion lack in high dimensional order, strong plasmonic interactions are observed due to close contact of AuNP. Applying temperature as an external stimulus allows the reversible distortion of plasmonic interactions within the AuNP nanocomposite structures, which can be observed directly by naked eye. The modulation of the macroscopic optical properties accompanied by this structural distortion of plasmonic interaction opens up very interesting sensoric applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Polímeros/química , Espectrofotometria Ultravioleta , Temperatura
18.
J Am Chem Soc ; 137(45): 14288-94, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26496508

RESUMO

A tetra(aniline)-based cationic amphiphile, TANI-NHC(O)C5H10N(CH3)3(+)Br(-) (TANI-PTAB) was synthesized, and its emeraldine base (EB) state was found to self-assemble into nanowires in aqueous solution. The observed self-assembly is described by an isodesmic model, as shown by temperature-dependent UV-vis investigations. Linear dichroism (LD) studies, combined with computational modeling using time-dependent density functional theory (TD-DFT), suggests that TANI-PTAB molecules are ordered in an antiparallel arrangement within nanowires, with the long axis of TANI-PTAB arranged perpendicular to the nanowire long axis. Addition of either S- or R- camphorsulfonic acid (CSA) to TANI-PTAB converted TANI to the emeraldine salt (ES), which retained the ability to form nanowires. Acid doping of TANI-PTAB had a profound effect on the nanowire morphology, as the CSA counterions' chirality translated into helical twisting of the nanowires, as observed by circular dichroism (CD). Finally, the electrical conductivity of CSA-doped helical nanowire thin films processed from aqueous solution was 2.7 mS cm(-1). The conductivity, control over self-assembled 1D structure and water-solubility demonstrate these materials' promise as processable and addressable functional materials for molecular electronics, redox-controlled materials and sensing.

19.
Biomacromolecules ; 16(11): 3686-93, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26461162

RESUMO

Novel poly(L-lysine)-block-poly(L-proline) (PLL-b-PLP)-based materials with all PLP helical conformers, i.e., PLP II and the rare PLP I are here reported. Electrostatic supramolecular complexation of the adjacent cationic PLL with anionic molecules bearing DNA analogue H-bonding functionalities, such as deoxyguanosine monophosphate (dGMP), preserves the extended PLP II helix, and the complexed molecule is locked and held in position by orthogonal shape-persistent hydrogen-bonded dGMP ribbons and their extended π-stacking. The branched anionic surfactant dodecylbenzenesulfonic acid (DBSA) on the other hand, introduces periodicity frustration and interlayer plasticization, leading to a reversed mutarotation to the more compact PLP I helix by complexation, without external stimuli, and is here reported for the first time. We foresee that our findings can be used as a platform for novel molecularly adaptive functional materials, and could possibly give insight in many proline-related transmembrane biological functions.


Assuntos
Materiais Biocompatíveis/química , Peptídeos/química , Benzenossulfonatos/química , Polilisina/química , Eletricidade Estática , Tensoativos
20.
Angew Chem Int Ed Engl ; 54(43): 12578-83, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26296431

RESUMO

Dendronization of a hyperbranched polyester with different generation dendrons leads to pseudo-dendritic structures. The hyperbranched core is modified by the divergent coupling of protected monomer units to the functional groups. Compared to dendrimers, the synthetic effort is significantly less, but the properties are very close to those of high-generation dendrimers. The number of functional groups, molar mass, and rheology behavior even in the early generation (G1-G4) pseudo-dendrimers strongly resembles the behavior of dendrimers in higher generations (G5-G8). Comparison of the segmental and internal structure with perfect dendrimers is performed using SANS, dynamic light scattering and viscosity analysis, microscopy and molecular dynamics simulation. The interpretation of the results reveals unique structural characteristics arising from lower segmental density of the core, which turns into a soft nano-sphere with a smooth surface even in the first generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...