Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261897

RESUMO

Tremendous advances have been made recently in the identification of genes and signaling pathways associated with the risks for psychiatric disorders such as schizophrenia and bipolar disorder. However, there has been a marked reduction in the pipeline for the development of new psychiatric drugs worldwide, mainly due to the complex causes that underlie these disorders. G-protein coupled receptors (GPCRs) are the most common targets of antipsychotics such as quetiapine and aripiprazole, and play pivotal roles in controlling brain function by regulating multiple downstream signaling pathways. Progress in our understanding of GPCR signaling has opened new possibilities for selective drug development. A key finding has been provided by the concept of biased ligands, which modulate some, but not all, of a given receptor's downstream signaling pathways. Application of this concept raises the possibility that the biased ligands can provide therapeutically desirable outcomes with fewer side effects. Instead, this application will require a detailed understanding of the mode of action of antipsychotics that drive distinct pharmacologies. We review our current understanding of the mechanistic bases for multiple signaling modes by antipsychotics and the potential of the biased modulators to treat mental disorders.


Assuntos
Antipsicóticos/uso terapêutico , Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Transtornos Mentais/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Animais , Humanos , Transtornos Mentais/tratamento farmacológico , Receptores de Dopamina D2/genética
2.
Brain Behav ; 8(1): e00881, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568682

RESUMO

Objectives: Bombesin receptor subtype-3 (BRS-3) has been suggested to play a potential role in energy homeostasis. However, the physiological mechanism of BRS-3 on energy homeostasis remains unknown. Thus, we investigated the BRS-3-mediated neuronal pathway involved in food intake and energy expenditure. Materials and Methods: Expression of BRS-3 in the rat brain was histologically examined. The BRS-3 neurons activated by refeeding-induced satiety or a BRS-3 agonist were identified by c-Fos immunostaining. We also analyzed expression changes in feeding-relating peptides in the brain of fasted rats administered with the BRS-3 agonist. Results: In the paraventricular hypothalamic nucleus (PVH), dorsomedial hypothalamic nucleus (DMH), and medial preoptic area (MPA), strong c-Fos induction was observed in the BRS-3 neurons especially in PVH after refeeding. However, the BRS-3 neurons in the PVH did not express feeding-regulating peptides, while the BRS-3 agonist administration induced c-Fos expression in the DMH and MPA, which were not refeeding-sensitive, as well as in the PVH. The BRS-3 agonist administration changed the Pomc and Cart mRNA level in several brain regions of fasted rats. Conclusion: These results suggest that BRS-3 neurons in the PVH are a novel functional subdivision in the PVH that regulates feeding behavior. As the MPA and DMH are reportedly involved in thermoregulation and energy metabolism, the BRS-3 neurons in the MPA/DMH might mediate the energy expenditure control. POMC and CART may contribute to BRS-3 neuron-mediated energy homeostasis regulation. In summary, BRS-3-expressing neurons could regulate energy homeostasis through a novel neuronal pathway.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores da Bombesina/metabolismo , Animais , Células CHO , Cricetulus , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores da Bombesina/agonistas , Receptores de Somatostatina/genética
3.
Endocrinology ; 158(5): 1298-1313, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28324017

RESUMO

Bombesin receptor subtype 3 (BRS-3) is an orphan G protein-coupled receptor. Based on the obese phenotype of male BRS-3-deficient mice, BRS-3 has been considered an attractive target for obesity treatment. Here, we developed a selective BRS-3 agonist (compound-A) and evaluated its antiobesity effects. Compound-A showed anorectic effects and enhanced energy expenditure in diet-induced-obese (DIO)-F344 rats. Moreover, repeated oral administration of compound-A for 7 days resulted in a significant body weight reduction in DIO-F344 rats. We also evaluated compound-A for cardiovascular side effects using telemeterized Sprague-Dawley (SD) rats. Oral administration of compound-A resulted in transient blood pressure increases in SD rats. To investigate the underlying mechanisms of BRS-3 agonist effects, we focused on the suprachiasmatic nucleus (SCN), the main control center of circadian rhythms in the hypothalamus, also regulating sympathetic nervous system. Compound-A significantly increased the messenger RNA expression of Brs-3, c-fos, and circadian rhythm genes in SCN of DIO-F344 rats. Because SCN also controls the hypothalamic-pituitary-adrenal (HPA) axis, we evaluated the relationship between BRS-3 and the HPA axis. Oral administration of compound-A caused a significant increase of plasma corticosterone levels in DIO-F344 rats. On this basis, energy expenditure enhancement by compound-A may be due to a circadian rhythm change in central and peripheral tissues, enhancement of peripheral lipid metabolism, and stimulation of the sympathetic nervous system. Furthermore, the blood pressure increase by compound-A could be associated with sympathetic nervous system stimulation via SCN and elevation of plasma corticosterone levels through activation of the HPA axis.


Assuntos
Fármacos Antiobesidade/farmacologia , Ritmo Circadiano/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptores da Bombesina/agonistas , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Obesidade/metabolismo , Obesidade/fisiopatologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Redução de Peso/efeitos dos fármacos
4.
Pharmacol Res Perspect ; 4(3): e00237, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27433346

RESUMO

Fasiglifam (TAK-875) is a free fatty acid receptor 1 (FFAR1)/G-protein-coupled receptor 40 (GPR40) agonist that improves glycemic control in type 2 diabetes with minimum risk of hypoglycemia. Fasiglifam potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells glucose dependently, although the precise mechanism underlying the glucose dependency still remains unknown. Here, we investigated key cross-talk between the GSIS pathway and FFAR1 signaling, and Ca(2+) dynamics using mouse insulinoma MIN6 cells. We demonstrated that the glucose-dependent insulinotropic effect of fasiglifam required membrane depolarization and that fasiglifam induced a glucose-dependent increase in intracellular Ca(2+) level and amplification of Ca(2+) oscillations. This differed from the sulfonylurea glimepiride that induced changes in Ca(2+) dynamics glucose independently. Stimulation with cell-permeable analogs of IP3 or diacylglycerol (DAG), downstream second messengers of Gαq-FFAR1, augmented GSIS similar to fasiglifam, indicating their individual roles in the potentiation of GSIS pathway. Intriguingly, the IP3 analog triggered similar Ca(2+) dynamics to fasiglifam, whereas the DAG analog had no effect. Despite the lack of an effect on Ca(2+) dynamics, the DAG analog elicited synergistic effects on insulin secretion with Ca(2+) influx evoked by an L-type voltage-dependent calcium channel opener that mimics glucose-dependent Ca(2+) dynamics. These results indicate that the Gαq signaling activated by fasiglifam enhances GSIS pathway via dual potentiating mechanisms in which IP3 amplifies glucose-induced Ca(2+) oscillations and DAG/protein kinase C (PKC) augments downstream secretory mechanisms independent of Ca(2+) oscillations.

5.
PLoS One ; 10(2): e0118510, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25693194

RESUMO

Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R) activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce transcriptional changes of immediate early genes (IEGs), raising the possibility that gene expressions play an essential role to improve psychiatric symptoms. Here, we report that while different classes of antipsychotics have complex pharmacological profiles against D2R, they share common transcriptome fingerprint (TFP) profile of IEGs in the murine brain in vivo by quantitative real-time PCR (qPCR). Our data showed that various types of antipsychotics with a profound interaction of D2R including haloperidol (antagonist), olanzapine (antagonist), and aripiprazole (partial agonist) all share common spatial TFPs closely homologous to those of D2R antagonist sulpiride, and elicited greater transcriptional responses in the striatum than in the nucleus accumbens. Meanwhile, D2R agonist quinpirole and propsychotic NMDA antagonists such as MK-801 and phencyclidine (PCP) exhibited the contrasting TFP profiles. Clozapine and propsychotic drug methamphetamine (MAP) displayed peculiar TFPs that reflect their unique pharmacological property. Our results suggest that transcriptional responses are conserved across various types of antipsychotics clinically effective in positive symptoms of schizophrenia and also show that temporal and spatial TFPs may reflect the pharmacological features of the drugs. Thus, we propose that a TFP approach is beneficial to evaluate novel drug candidates for antipsychotic development.


Assuntos
Antipsicóticos/administração & dosagem , Encéfalo/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Alucinógenos/administração & dosagem , Receptores de Dopamina D2/genética , Animais , Antipsicóticos/farmacologia , Aripiprazol/administração & dosagem , Aripiprazol/farmacologia , Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacologia , Maleato de Dizocilpina/administração & dosagem , Maleato de Dizocilpina/farmacologia , Alucinógenos/farmacologia , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Metanfetamina/administração & dosagem , Metanfetamina/farmacologia , Camundongos , Olanzapina , Fenciclidina/administração & dosagem , Fenciclidina/farmacologia , Receptores de Dopamina D2/agonistas
6.
PLoS One ; 9(2): e90134, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587241

RESUMO

Many drugs of abuse and most neuropharmacological agents regulate G protein-coupled receptors (GPCRs) in the central nervous system (CNS)_ENREF_1. The striatum, in which dopamine D1 and D2 receptors are enriched, is strongly innervated by the ventral tegmental area (VTA), which is the origin of dopaminergic cell bodies of the mesocorticolimbic dopamine system_ENREF_3 and plays a central role in the development of psychiatric disorders_ENREF_4. Here we report the comprehensive and anatomical transcript profiling of 322 non-odorant GPCRs in mouse tissue by quantitative real-time PCR (qPCR), leading to the identification of neurotherapeutic receptors exclusively expressed in the CNS, especially in the striatum. Among them, GPR6, GPR52, and GPR88, known as orphan GPCRs, were shown to co-localize either with a D2 receptor alone or with both D1 and D2 receptors in neurons of the basal ganglia. Intriguingly, we found that GPR52 was well conserved among vertebrates, is Gs-coupled and responsive to the antipsychotic drug, reserpine. We used three types of transgenic (Tg) mice employing a Cre-lox system under the control of the GPR52 promoter, namely, GPR52-LacZ Tg, human GPR52 (hGPR52) Tg, and hGPR52-GFP Tg mice. Detailed histological investigation suggests that GPR52 may modulate dopaminergic and glutamatergic transmission in neuronal circuits responsible for cognitive function and emotion. In support of our prediction, GPR52 knockout and transgenic mice exhibited psychosis-related and antipsychotic-like behaviors, respectively. Therefore, we propose that GPR52 has the potential of being a therapeutic psychiatric receptor. This approach may help identify potential therapeutic targets for CNS diseases.


Assuntos
Transtornos Psicóticos/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Sequência Conservada , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Emoções/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reserpina/farmacologia , Transdução de Sinais , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia
7.
PLoS One ; 8(10): e76280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130766

RESUMO

Selective free fatty acid receptor 1 (FFAR1)/GPR40 agonist fasiglifam (TAK-875), an antidiabetic drug under phase 3 development, potentiates insulin secretion in a glucose-dependent manner by activating FFAR1 expressed in pancreatic ß cells. Although fasiglifam significantly improved glycemic control in type 2 diabetes patients with a minimum risk of hypoglycemia in a phase 2 study, the precise mechanisms of its potent pharmacological effects are not fully understood. Here we demonstrate that fasiglifam acts as an ago-allosteric modulator with a partial agonistic activity for FFAR1. In both Ca(2+) influx and insulin secretion assays using cell lines and mouse islets, fasiglifam showed positive cooperativity with the FFAR1 ligand γ-linolenic acid (γ-LA). Augmentation of glucose-induced insulin secretion by fasiglifam, γ-LA, or their combination was completely abolished in pancreatic islets of FFAR1-knockout mice. In diabetic rats, the insulinotropic effect of fasiglifam was suppressed by pharmacological reduction of plasma free fatty acid (FFA) levels using a lipolysis inhibitor, suggesting that fasiglifam potentiates insulin release in conjunction with plasma FFAs in vivo. Point mutations of FFAR1 differentially affected Ca(2+) influx activities of fasiglifam and γ-LA, further indicating that these agonists may bind to distinct binding sites. Our results strongly suggest that fasiglifam is an ago-allosteric modulator of FFAR1 that exerts its effects by acting cooperatively with endogenous plasma FFAs in human patients as well as diabetic animals. These findings contribute to our understanding of fasiglifam as an attractive antidiabetic drug with a novel mechanism of action.


Assuntos
Benzofuranos/farmacologia , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Benzofuranos/uso terapêutico , Linhagem Celular , Cricetinae , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Agonismo Parcial de Drogas , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Mutação , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/uso terapêutico , Ácido gama-Linolênico/metabolismo
8.
Biochim Biophys Acta ; 1810(9): 853-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21609753

RESUMO

BACKGROUND: Apelin is an endogenous ligand for the G-protein-coupled 7-transmembrane receptor, APJ. The administration of apelin-13, a truncated 13-amino acid apelin peptide, in diet-induced obese mice is reported to result in a decrease in adiposity due to the increase of energy expenditure with an increase in the expression of uncoupling proteins. METHODS: We systematically compared the phenotype of human apelin-transgenic (apelin-Tg) mice fed standard or high-fat diets (HFD) with that of non-Tg control mice to clarify the effect of apelin on obesity. The beneficial effects of apelin were evaluated by multiple assay methods including indirect calorimetrical measurements, gene expression analysis, and immunohistochemical staining. RESULTS: Apelin-Tg mice inhibited HFD-induced obesity without altering food intake and exhibited increased oxygen consumption and body temperature compared to non-Tg controls. Interestingly, the mRNA expressions of angiopoietin-1 (Ang1), a key molecule for vascular maturation, and its receptor, endothelium-specific receptor tyrosine kinase 2 (Tie2), were significantly upregulated in the skeletal muscle of HFD-fed apelin-Tg mice, and the areas of anti-CD31 antibody-positive endothelial cells also increased. Furthermore, both the aerobic type-I muscle fibre ratio and the DNA copy number of mitochondrial NADH dehydrogenase subunit 1 increased 2.0- and 1.4-fold in skeletal muscle, respectively. CONCLUSIONS: These findings suggest that apelin stimulates energy expenditure via increase vascular mass and mitochondrial biogenesis in skeletal muscle. GENERAL SIGNIFICANCE: Apelin is a prerequisite factor for anti-obesity by stimulating energy expenditure via regulating homeostatic energy balance.


Assuntos
Gorduras na Dieta/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mitocôndrias Musculares/genética , Obesidade/fisiopatologia , Tecido Adiposo/crescimento & desenvolvimento , Angiopoietina-1/biossíntese , Animais , Apelina , Temperatura Corporal/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Consumo de Oxigênio , Receptores Proteína Tirosina Quinases/biossíntese , Receptor TIE-2
9.
Biochem Biophys Res Commun ; 324(1): 255-61, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15465011

RESUMO

We have discovered that humanin (HN) acts as a ligand for formyl peptide receptor-like 1 (FPRL1) and 2 (FPRL2). This discovery was based on our finding that HN suppressed forskolin-induced cAMP production in Chinese hamster ovary (CHO) cells expressing human FPRL1 (CHO-hFPRL1) or human FPRL2 (CHO-hFPRL2). In addition, we found that N-formylated HN (fHN) performed more potently as a ligand for FPRL1 than HN: in CHO-hFPRL1 cells, the effective concentration for the half-maximal response (EC(50)) value of HN was 3.5nM, while that of fHN was 0.012nM. We demonstrated by binding experiments using [(125)I]-W peptide that HN and fHN directly interacted with hFPRL1 on the membrane. In addition, we found that HN and fHN showed strong chemotactic activity for CHO-hFPRL1 and CHO-hFPRL2 cells. HN is known to have a protective effect against neuronal cell death. Our findings contribute to the understanding of the mechanism behind HN's function.


Assuntos
Proteínas/química , Proteínas/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Animais , Células CHO , Cricetinae , AMP Cíclico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Fragmentos de Peptídeos/metabolismo , Proteínas/genética , Receptores de Formil Peptídeo/genética , Receptores de Lipoxinas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Distribuição Tecidual
10.
J Biol Chem ; 278(47): 46387-95, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12960173

RESUMO

We searched for peptidic ligands for orphan G protein-coupled receptors utilizing a human genome data base and identified a new gene encoding a preproprotein that could generate a peptide. This peptide consisted of 43 amino acid residues starting from N-terminal pyroglutamic acid and ending at C-terminal arginine-phenylalanine-amide. We therefore named it QRFP after pyroglutamylated arginine-phenylalanine-amide peptide. We subsequently searched for its receptor and found that Chinese hamster ovary cells expressing an orphan G protein-coupled receptor, AQ27, specifically responded to QRFP. We analyzed tissue distributions of QRFP and its receptor mRNAs in rats utilizing quantitative reverse transcription-polymerase chain reaction and in situ hybridization. QRFP mRNA was highly expressed in the hypothalamus, whereas its receptor mRNA was highly expressed in the adrenal gland. The intravenous administration of QRFP caused the release of aldosterone, suggesting that QRFP and its receptor have a regulatory function in the rat adrenal gland.


Assuntos
Peptídeos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Glândulas Suprarrenais/química , Glândulas Suprarrenais/metabolismo , Aldosterona/metabolismo , Animais , Sequência de Bases , Células CHO , Cricetinae , Humanos , Hipotálamo/química , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Distribuição Tecidual , Transfecção
11.
Biochim Biophys Acta ; 1593(2-3): 151-7, 2003 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-12581859

RESUMO

Based on database searches of DNA sequences, we previously reported a gene encoding peptides possessing Arg-Phe-NH(2) (RFamide) at their C termini. This gene, RFamide-related peptide (RFRP), was expected to encode several different peptides (i.e., RFRP-1, -2, and -3). In the present study, we purified endogenous RFRP-3 from bovine hypothalamus, and demonstrated that it consisted of 28 amino acid residues. After constructing a sandwich enzyme immunoassay for RFRP-3, we analyzed the tissue distribution of endogenous RFRP-3 in rats and found its concentration to be highest in the hypothalamus. In binding assays, [125I]-labeled RFRP-3 bound to OT7T022 with high affinity, but its binding affinity to HLWAR77 was low. On the other hand, [125I]-labeled neuropeptide FF (NPFF) bound to both OT7T022 and HLWAR77 with high affinity. By serial deletion in the N-terminal portions of RFRP-3 and NPFF, we found that four C-terminal amino acid residues (i.e., PQRFamide), which were common between the two peptides, comprised a core sequence responsible for binding with the receptors, whereas three amino acid residues (i.e., PNL in RFRP-3 and LFQ in NPFF) added to the N terminus of PQRFamide played crucial roles in the agonistic activities of RFRP-3 and NPFF for OT7T022 and HLWAR77, respectively.


Assuntos
Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Sítios de Ligação , Ligação Competitiva , Bovinos , Cromatografia , Humanos , Hipotálamo/química , Hipotálamo/metabolismo , Técnicas Imunoenzimáticas , Dados de Sequência Molecular , Estrutura Molecular , Neuropeptídeos/imunologia , Neuropeptídeos/isolamento & purificação , Oligopeptídeos/metabolismo , Ratos , Espectrometria de Massas por Ionização por Electrospray , Tálamo/química , Tálamo/metabolismo
12.
J Biol Chem ; 278(11): 9435-40, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12524422

RESUMO

So far some nuclear receptors for bile acids have been identified. However, no cell surface receptor for bile acids has yet been reported. We found that a novel G protein-coupled receptor, TGR5, is responsive to bile acids as a cell-surface receptor. Bile acids specifically induced receptor internalization, the activation of extracellular signal-regulated kinase mitogen-activated protein kinase, the increase of guanosine 5'-O-3-thio-triphosphate binding in membrane fractions, and intracellular cAMP production in Chinese hamster ovary cells expressing TGR5. Our quantitative analyses for TGR5 mRNA showed that it was abundantly expressed in monocytes/macrophages in human and rabbit. Treatment with bile acids was found to suppress the functions of rabbit alveolar macrophages including phagocytosis and lipopolysaccharide-stimulated cytokine productions. We prepared a monocytic cell line expressing TGR5 by transfecting a TGR5 cDNA into THP-1 cells that did not express TGR5 originally. Treatment with bile acids suppressed the cytokine productions in the THP-1 cells expressing TGR5, whereas it did not influence those in the original THP-1 cells, suggesting that TGR5 is implicated in the suppression of macrophage functions by bile acids.


Assuntos
Ácidos e Sais Biliares/química , Proteínas de Ligação ao GTP/química , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G , Sequência de Aminoácidos , Animais , Ácidos e Sais Biliares/metabolismo , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , AMP Cíclico/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Vetores Genéticos , Proteínas de Fluorescência Verde , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fagocitose , Ligação Proteica , RNA Mensageiro/metabolismo , Coelhos , Ratos , Receptores de Superfície Celular/química , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Distribuição Tecidual , Transfecção
13.
J Biol Chem ; 277(37): 34010-6, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12118011

RESUMO

We isolated a novel gene in a search of the Celera data base and found that it encoded a peptidic ligand for a G protein-coupled receptor, GPR7 (O'Dowd, B. F., Scheideler, M. A., Nguyen, T., Cheng, R., Rasmussen, J. S., Marchese, A., Zastawny, R., Heng, H. H., Tsui, L. C., Shi, X., Asa, S., Puy, L., and George, S. R. (1995) Genomics 28, 84-91; Lee, D. K., Nguyen, T., Porter, C. A., Cheng, R., George, S. R., and O'Dowd, B. F. (1999) Mol. Brain Res. 71, 96-103). The expression of this gene was detected in various tissues in rats, including the lymphoid organs, central nervous system, mammary glands, and uterus. GPR7 mRNA was mainly detected in the central nervous system and uterus. In situ hybridization showed that the gene encoding the GPR7 ligand was expressed in the hypothalamus and hippocampus of rats. To determine the molecular structure of the endogenous GPR7 ligand, we purified it from bovine hypothalamic tissue extracts on the basis of cAMP production-inhibitory activity to cells expressing GPR7. Through structural analyses, we found that the purified endogenous ligand was a peptide with 29 amino acid residues and that it was uniquely modified with bromine. We subsequently determined that the C-6 position of the indole moiety in the N-terminal Trp was brominated. We believe this is the first report on a neuropeptide modified with bromine and have hence named it neuropeptide B. In in vitro assays, bromination did not influence the binding of neuropeptide B to the receptor.


Assuntos
Neuropeptídeos/análise , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Bromo , Células CHO , Bovinos , Clonagem Molecular , Cricetinae , AMP Cíclico/biossíntese , Ligantes , Dados de Sequência Molecular , Neuropeptídeos/química , Neuropeptídeos/metabolismo , RNA Mensageiro/análise , Ratos , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/química
14.
Dev Growth Differ ; 33(6): 563-569, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37281763

RESUMO

The culture medium of the strain CK-8 of the cellular slime mold Polysphondylium pallidum contains a cell-fusion induction factor. Cells of the two opposite mating type strains NC-4 and HM1 of Dictyostelium discoideum were treated to induce cell fusion with the diluted fraction of CK-8 cultures, F2, which contains the factor and consequently numerous multinuclear cells were produced. NC-4 and HM1 usually fuse in the sexual cycle and form large multinuclear cells, called giant cells, which develop into macrocysts. These cells are very similar in morphology to the multinuclear cells produced following F2 treatment, however, the latter cells did not develop into macrocysts. In the sexually formed multinuclear cells, only two haploid nuclei fused to form a diploid nucleus and all others degenerate as previously reported. However, in the artificially produced multinuclear cells, no nuclear-fusion and degeneration took place. They stayed as heterokaryons and seem to lyse within 20 h incubation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...