Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(6): e100852, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24964213

RESUMO

Heat-related mortality in US cities is expected to more than double by the mid-to-late 21st century. Rising heat exposure in cities is projected to result from: 1) climate forcings from changing global atmospheric composition; and 2) local land surface characteristics responsible for the urban heat island effect. The extent to which heat management strategies designed to lessen the urban heat island effect could offset future heat-related mortality remains unexplored in the literature. Using coupled global and regional climate models with a human health effects model, we estimate changes in the number of heat-related deaths in 2050 resulting from modifications to vegetative cover and surface albedo across three climatically and demographically diverse US metropolitan areas: Atlanta, Georgia, Philadelphia, Pennsylvania, and Phoenix, Arizona. Employing separate health impact functions for average warm season and heat wave conditions in 2050, we find combinations of vegetation and albedo enhancement to offset projected increases in heat-related mortality by 40 to 99% across the three metropolitan regions. These results demonstrate the potential for extensive land surface changes in cities to provide adaptive benefits to urban populations at risk for rising heat exposure with climate change.


Assuntos
Cidades/estatística & dados numéricos , Mudança Climática/mortalidade , Temperatura Alta , Atmosfera , Humanos , Modelos Estatísticos , Estações do Ano , Estados Unidos
2.
J Environ Manage ; 114: 243-52, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23176982

RESUMO

Land cover changes affect local surface energy balances by changing the amount of solar energy reflected, the magnitude and duration over which absorbed energy is released as heat, and the amount of energy that is diverted to non-heating fluxes through evaporation. However, such local influences often are only crudely included in climate modeling exercises, if at all. A better understanding of local land conversion dynamics can serve to inform inputs for climate models and increase the role for land use planning in climate management policy. Here we present a new approach for projecting and incorporating metropolitan land cover change into mesoscale climate and other environmental assessment models. Our results demonstrate the relative contributions of different land development patterns to land cover change and conversion and suggest that regional growth management strategies serving to increase settlement densities over time can have a significant influence on the rate of deforestation per unit of population growth. Employing the approach presented herein, the impacts of land conversion on climate change and on parallel environmental systems and services, such as ground water recharge, habitat provision, and food production, may all be investigated more closely and managed through land use planning.


Assuntos
Cidades , Clima , Geografia , Modelos Teóricos , Planejamento de Cidades , Philadelphia , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...