Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Environ X ; 16: 1-17, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36960321

RESUMO

Wildland fires are a major source of gases and aerosols, and the production, dispersion, and transformation of fire emissions have significant ambient air quality impacts and climate interactions. The increase in wildfire area burned and severity across the United States and Canada in recent decades has led to increased interest in expanding the use of prescribed fires as a forest management tool. While the primary goal of prescribed fire use is to limit the loss of life and property and ecosystem damage by constraining the growth and severity of future wildfires, a potential additional benefit of prescribed fire - reduction in the adverse impacts of smoke production and greenhouse gas (GHG) emissions - has recently gained the interest of land management agencies and policy makers in the United States and other nations. The evaluation of prescribed fire/wildfire scenarios and the potential mitigation of adverse impacts on air quality and GHGs requires fuel layer specific pollutant emission factors (EFs) for fire prone forest ecosystems. Our study addresses this need with laboratory experiments measuring EFs for carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), ethyne (C2H2), formaldehyde (H2CO), formic acid (CH2O2), hydrogen cyanide (HCN), fine particulate matter (PM2.5), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and total reduced sulfur (TRS) for the burning of individual fuel components from three forest ecosystems which account for a large share of wildfire burned area and emissions in the western United States and Canada - Douglas fir, ponderosa pine, and black spruce/jack pine.

2.
Atmos Meas Tech ; 14(3): 1783-1800, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34017362

RESUMO

In recent years wildland fires in the United States have had significant impacts on local and regional air quality and negative human health outcomes. Although the primary health concerns from wildland fires come from fine particulate matter (PM2.5), large increases in ozone (O3) have been observed downwind of wildland fire plumes (DeBell et al., 2004; Bytnerowicz et al., 2010; Preisler et al., 2010; Jaffe et al., 2012; Bytnerowicz et al., 2013; Jaffe et al., 2013; Lu et al., 2016; Lindaas et al., 2017; McClure and Jaffe, 2018; Liu et al., 2018; Baylon et al., 2018; Buysse et al., 2019). Conditions generated in and around wildland fire plumes, including the presence of interfering chemical species, can make the accurate measurement of O3 concentrations using the ultraviolet (UV) photometric method challenging if not impossible. UV photometric method instruments are prone to interferences by volatile organic compounds (VOCs) that are present at high concentrations in wildland fire smoke. Four different O3 measurement methodologies were deployed in a mobile sampling platform downwind of active prescribed grassland fire lines in Kansas and Oregon and during controlled chamber burns at the United States Forest Service, Rocky Mountain Research Station Fire Sciences Laboratory in Missoula, Montana. We demonstrate that the Federal Reference Method (FRM) nitric oxide (NO) chemiluminescence monitors and Federal Equivalent Method (FEM) gas-phase (NO) chemical scrubber UV photometric O3 monitors are relatively interference-free, even in near-field combustion plumes. In contrast, FEM UV photometric O3 monitors using solid-phase catalytic scrubbers show positive artifacts that are positively correlated with carbon monoxide (CO) and total gas-phase hydrocarbon (THC), two indicator species of biomass burning. Of the two catalytic scrubber UV photometric methods evaluated, the instruments that included a Nafion® tube dryer in the sample introduction system had artifacts an order of magnitude smaller than the instrument with no humidity correction. We hypothesize that Nafion®-permeating VOCs (such as aromatic hydrocarbons) could be a significant source of interference for catalytic scrubber UV photometric O3 monitors and that the inclusion of a Nafion® tube dryer assists with the mitigation of these interferences. The chemiluminescence FRM method is highly recommended for accurate measurements of O3 in wildland fire plume studies and at regulatory ambient monitoring sites frequently impacted by wildland fire smoke.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33889052

RESUMO

Wildland fires can emit substantial amounts of air pollution that may pose a risk to those in proximity (e.g., first responders, nearby residents) as well as downwind populations. Quickly deploying air pollution measurement capabilities in response to incidents has been limited to date by the cost, complexity of implementation, and measurement accuracy. Emerging technologies including miniaturized direct-reading sensors, compact microprocessors, and wireless data communications provide new opportunities to detect air pollution in real time. The U.S. Environmental Protection Agency (EPA) partnered with other U.S. federal agencies (CDC, NASA, NPS, NOAA, USFS) to sponsor the Wildland Fire Sensor Challenge. EPA and partnering organizations share the desire to advance wildland fire air measurement technology to be easier to deploy, suitable to use for high concentration events, and durable to withstand difficult field conditions, with the ability to report high time resolution data continuously and wirelessly. The Wildland Fire Sensor Challenge encouraged innovation worldwide to develop sensor prototypes capable of measuring fine particulate matter (PM2.5), carbon monoxide (CO), carbon dioxide (CO2), and ozone (O3) during wildfire episodes. The importance of using federal reference method (FRM) versus federal equivalent method (FEM) instruments to evaluate performance in biomass smoke is discussed. Ten solvers from three countries submitted sensor systems for evaluation as part of the challenge. The sensor evaluation results including sensor accuracy, precision, linearity, and operability are presented and discussed, and three challenge winners are announced. Raw solver submitted PM2.5 sensor accuracies of the winners ranged from ~22 to 32%, while smoke specific EPA regression calibrations improved the accuracies to ~75-83% demonstrating the potential of these systems in providing reasonable accuracies over conditions that are typical during wildland fire events.

4.
Atmos Environ (1994) ; 265: 1-8, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35153533

RESUMO

Wildland fire activity and associated emission of particulate matter air pollution is increasing in the United States over the last two decades due primarily to a combination of increased temperature, drought, and historically high forest fuel loading. The regulatory monitoring networks in the Unites States are mostly concentrated in larger population centers where anthropogenic air pollution sources are concentrated. Smaller population centers in areas more likely to be impacted by wildland fire smoke in many instances lack adequate observational air quality data. Several commercially available small form factor filter-based PM2.5 samplers (SFFFS) were evaluated under typical ambient and simulated near-to mid-field wildland fire smoke conditions to evaluate their accuracy for use in temporary deployments during prescribed and wildfire events. The performance of all the SFFFS tested versus the designated federal reference methods (FRM) was acceptable in determining PM2.5 concentration in both ambient (2.7-14.0 µg m-3) and chamber smoke environments (24.6-3044.6 µg m-3) with accuracies ranging from ~92 to 98%. However, only the ARA Instruments model N-FRM Sampler was found to provide PM2.5 mass measurement accuracies that meet FRM guideline performance specifications under both typical ambient (97.3 ± 1.9%) and simulated wildland fire conditions (98.2 ± 1.4%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...