Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 448: 130865, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764257

RESUMO

Detailed analysis of electronic waste (e-waste) generation and composition is of utmost importance for the proper management of growing e-waste stream worldwide, containing both hazardous and valuable materials. Considering the absence of such comprehensive and up-to-date studies in Canada, this work presents the first estimate of put-on-market electrical and electronic equipment (EEE), the in-use stocks of EEE and e-waste generation in Canada from 1971 to 2030 for 51 product categories comprising 198 product types. Using a dynamic material flow analysis (MFA), the put-on-market EEE is estimated based on trade data retrieved from national and international import and export statistics, and the in-use stocks of EEE and the resulting e-waste are calculated using the Weibull distribution function. The results show that the total mass of EEE within the 60-year period is estimated to be 42.3 million tonnes, with an annual average growth rate of approximately 0.5%. By 2030, the total accumulated in-use stock of EEE is estimated to exceed 13 million tonnes. The estimated e-waste over the 60-year timespan is 29.1 million tonnes. The total annual e-waste generation in Canada is calculated to be 252 kilo tonnes (kt) and 954 kt in the years 2000 and 2020 respectively, which is estimated to reach 1.2 million tonnes by 2030. The e-waste generation per capita increased from 8.3 kg in 2000 to 25.3 kg in 2020 and is estimated to reach 31.5 kg by 2030. This quantification provides valuable insights to policymakers for setting up targets for waste reduction and identifying the resource circularity potential for efficient management of e-waste.

2.
Environ Pollut ; 315: 120334, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36216183

RESUMO

The resilience and low cost of plastics has made their usage ubiquitous, but is also the cause of their prevalence and longevity as waste. Plastic pollution has become a great concern to the health and wellbeing of ecosystems around the world; microplastics are a particular threat, due to their high mobility, ease of ingestion by wildlife, and ability to adsorb and carry toxic contaminants. Material flow analysis has been widely applied to examine stocks and flows of materials in other industries, and has more recently been applied to plastics to examine areas where waste can reach the environment. However, while much research has gone into the environmental fate of microplastics, degradation strategies have been a lesser focus, and material flow analysis of microplastics has suffered from lack of data. Furthermore, the variety of plastics, their additives, and any contaminants pose a significant challenge in degrading (and not merely fragmenting) microplastic particles. This review discusses the current degradation strategies and solutions for dealing with existing and newly-generated microplastic waste along with examining the status of microplastics-based material flow analysis, which are critical for evaluating the possibility of incorporating microplastic waste into a circular economy. The degradation strategies are critically examined, identifying challenges and current trends, as well as important considerations that are frequently under-reported. An emphasis is placed on identifying missing data or information in both material flow analysis and degradation methods that could prove crucial in improving understanding of microplastic flows, as well as optimizing degradation strategies and minimizing any negative environmental impact.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Poluição Ambiental , Monitoramento Ambiental
3.
Environ Sci Technol ; 49(20): 12441-9, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26351732

RESUMO

Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.


Assuntos
Computadores , Resíduo Eletrônico/análise , Metais Terras Raras/isolamento & purificação , Reciclagem/métodos , Alumínio , Boro/isolamento & purificação , Dinamarca , Resíduo Eletrônico/estatística & dados numéricos , Monitoramento Ambiental/métodos , Ferro/isolamento & purificação , Imãs , Metalurgia/métodos , Metais Terras Raras/análise , Neodímio/isolamento & purificação , Aço
4.
Waste Manag ; 45: 391-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25792438

RESUMO

Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration.


Assuntos
Fertilizantes/análise , Fósforo/análise , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Gerenciamento de Resíduos/métodos , Temperatura Alta , Incineração
5.
Environ Sci Technol ; 48(20): 12229-37, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25238428

RESUMO

Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.


Assuntos
Disprósio , Imãs/química , Neodímio , Reciclagem , Boro , Dinamarca , Ferro , Metais Terras Raras
6.
Waste Manag ; 33(9): 1926-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23769238

RESUMO

The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP(100)), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO(2)-eq.tonne(-1) to net saving of 670 kg CO(2)-eq.tonne(-1) of MSWM.


Assuntos
Aquecimento Global , Eliminação de Resíduos/métodos , Cidades , Dinamarca , Gases/análise , Efeito Estufa , Incineração/métodos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...