Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(32): 22346-22356, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37497096

RESUMO

Phosphorus (P) limits plant growth particularly in strongly acidic soils due to P fixation. P availability to a plant is a functional concept of time rather than a measurable quantity. Therefore, a method that can estimate P availability over time is required. This research work was intended to synthesize a nanocomposite material that can monitor soil P desorption kinetics. To this effect, a binary sorbent system filled in a dialysis membrane tube was developed. Accordingly, calcined and amorphous powder samples of Fe-Al binary mixed oxides were synthesized by a gel-evaporation method and characterized by XRD, FTIR, TGA-DTA, SEM-EDX and BET techniques. The performance, as a phosphate sink, of crystalline hydrous ferric aluminum oxide (HFAO) and hydrous amorphous ferric aluminum oxide (HAFAO) each filled in a dialysis membrane tube (DMT) was evaluated. A single hydrated ferric oxide (HFO) suspension filled in dialysis membrane tubes (DMT) designated DMT-HFO was used as a benchmark. For the aqueous system, the sorption capacity of the DMT-HFAO was found to be 260% (mg mg-1 phosphate) whereas the amorphous congener (DMT-HAFAO) was approximately 200% (mg mg-1 phosphate) times that of DMT-HFO during the 24 h equilibration. For the soil solution system, the phosphate desorbed by the DMT-HFAO was about 520% (mg mg-1 phosphate) compared with a single system, DMT-HFO, in 168 h. For the desorption experiment carried out with soil solution, the data fitted fairly well with first order kinetics for both sorbents (R2 = 0.946-0.998), the amount adsorbed by DMT-HFAO being greater than DMT-HFO. The soil data fitted an intra-particle diffusion model fairly well for both sorbents (R2 = 0.98-0.992) with rate constants, kp, following the order: DMT-HFAO > DMT-HAFAO > DMT-HFO. The DMT-HFAO approach also showed better fit to the two component first order model (R2 = 0.994 & 0.997) indicating that the modified method has promising potential for a long-term phosphate desorption kinetics study from soil, the implication of which is important both from agricultural and environmental perspectives. However, correlation of the P adsorbed by this sink method with actual plant P uptake in various soils should be carried out to validate the universality of this technique.

2.
Dalton Trans ; 50(30): 10340-10353, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34241616

RESUMO

Transition metals have a long history in heterogeneous catalysis. Noble or precious transition metals have been widely used in this field. The advantage of noble and precious metals is obvious in 'heterogeneous catalysis'. However, the choice of Earth abundant metals is a sustainable alternative due to their abundance and low cost. Preparing these metals in the nanoscale dimension increases their surface area which also increases the catalytic reactions of these materials. Nevertheless, metals are unstable in the nanoparticle form and tend to form aggregates which restrict their applications. Loading metal nanoparticles (MNPs) into highly porous materials is among the many alternatives for combating the unstable nature of the active species. Among porous materials, highly crystalline metal-organic frameworks (MOFs), which are an assembly of metal ions/clusters with organic ligands, are the best candidate. MOFs, on their own, possess catalytic activity derived from the linkers and metal ions or clusters. The catalytic properties of both non-noble metal nanoparticles (MNPs) and MOFs can be improved by loading non-noble MNPs in MOFs yielding MNP@MOF composites with a variety of potential applications, given the synergy and based on the nature of the MNP and MOF. Here, we discussed the synthesis of MNP@MOF materials and the applications of non-noble MNP@MOF materials in heterogeneous catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...