Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(2): e13621, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343779

RESUMO

In mixed-stock fishery analyses, genetic stock identification (GSI) estimates the contribution of each population to a mixture and is typically conducted at a regional scale using genetic baselines specific to the stocks expected in that region. Often these regional baselines cannot be combined to produce broader geographical baselines due to non-overlapping populations and genetic markers. In cases where the mixture contains stocks spanning across a wide area, a broad-scale baseline is created, but often at the cost of resolution. Here, we introduce a new GSI method to harness the resolution capabilities of baselines developed for regional applications in the analysis of mixtures containing individuals from a broad geographic range. This method employs a multistage framework that allows disparate baselines to be used in a single integrated process that produces estimates along with the propagated errors from each stage. All individuals in the mixture sample are required to be genotyped for all genetic markers in the baselines used by this model, but the baselines do not require overlap in genetic markers or populations representing the broad-scale or regional baselines. We demonstrate the utility of our integrated multistage model using a synthesized data set made up of Chinook salmon, Oncorhynchus tshawytscha, from the North Bering Sea of Alaska. The results show an improved accuracy for estimates using an integrated multistage framework, compared to the conventional framework of using separate hierarchical steps. The integrated multistage framework allows GSI of a wide geographic area without first developing a large scale, high-resolution genetic baseline or dividing a mixture sample into smaller regions beforehand. This approach is more cost-effective than updating range-wide baselines with all regionally important markers.

2.
Evol Appl ; 15(3): 429-446, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35386398

RESUMO

Previous studies generally report that hatchery-origin Pacific Salmon (Oncorhynchus spp.) have lower relative reproductive success (RRS) than their natural-origin counterparts. We estimated the RRS of Pink Salmon (O. gorbuscha) in Prince William Sound (PWS), Alaska using incomplete pedigrees. In contrast to other RRS studies, Pink Salmon have a short freshwater life history, freshwater habitats in PWS are largely unaltered by development, and sampling was conducted without the aid of dams or weirs resulting in incomplete sampling of spawning individuals. Pink Salmon released from large-scale hatchery programs in PWS have interacted with wild populations for more than 15 generations. Hatchery populations were established from PWS populations but have subsequently been managed as separate broodstocks. Gene flow is primarily directional, from hatchery strays to wild populations. We used genetic-based parentage analysis to estimate the RRS of a single generation of stray hatchery-origin Pink Salmon in two streams, and across the odd- and even-year lineages. Despite incomplete sampling, we assigned 1745 offspring to at least one parent. Reproductive success (RS), measured as sampled adult offspring that returned to their natal stream, was significantly lower for hatchery- vs. natural-origin parents in both lineages, with RRS ranging from 0.03 to 0.47 for females and 0.05 to 0.86 for males. Generalized linear modeling for the even-year lineage indicated that RRS was lower for hatchery-origin fish, ranging from 0.42 to 0.60, after accounting for sample date (run timing), sample location within the stream, and fish length. Our results strongly suggest that hatchery-origin strays have lower fitness in the wild. The consequences of reduced RRS on wild productivity depend on whether the mechanisms underlying reduced RRS are environmentally driven, and likely ephemeral, or genetically driven, and likely persistent across generations.

3.
PLoS One ; 8(12): e81916, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349150

RESUMO

The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960's for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964-1982) with frequencies in contemporary samples (2008-2010) and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.


Assuntos
Quimera/genética , Fluxo Gênico , Oncorhynchus keta/genética , Salmão/genética , Alaska , Animais , Cruzamento , Conservação dos Recursos Naturais , Feminino , Pesqueiros , Variação Genética , Genética Populacional , Genótipo , Masculino , Repetições de Microssatélites , Modelos Genéticos , Oncorhynchus keta/classificação , Fenótipo , Filogenia
4.
Mol Ecol Resour ; 11 Suppl 1: 268-77, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21429180

RESUMO

Incorporating historical tissues into the study of ecological, conservation and management questions can broaden the scope of population genetic research by enhancing our understanding of evolutionary processes and anthropogenic influences on natural populations. Genotyping historical and low-quality samples has been plagued by challenges associated with low amounts of template DNA and the potential for pre-existing DNA contamination among samples. We describe a two-step process designed to (i) accurately genotype large numbers of historical low-quality scale samples in a high-throughput format and (ii) screen samples for pre-existing DNA contamination. First, we describe how an efficient multiplex preamplification PCR of 45 single nucleotide polymorphisms (SNPs) can generate highly accurate genotypes with low failure and error rates in subsequent SNP genotyping reactions of individual historical scales from sockeye salmon (Oncorhynchus nerka). Second, we demonstrate how the method can be modified for the amplification of microsatellite loci to detect pre-existing DNA contamination. A total of 760 individual historical scale and 182 contemporary fin clip samples were genotyped and screened for contamination. Genotyping failure and error rates were exceedingly low and similar for both historical and contemporary samples. Pre-existing contamination in 21% of the historical samples was successfully identified by screening the amplified microsatellite loci. The advantages of automation, low failure and error rates, and ability to multiplex both the preamplification and subsequent genotyping reactions combine to make the protocol ideally suited for efficiently genotyping large numbers of potentially contaminated low-quality sources of DNA.


Assuntos
Genótipo , Repetições de Microssatélites , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Salmão/genética , Animais , Contaminação por DNA
5.
BMC Evol Biol ; 11: 48, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21332997

RESUMO

BACKGROUND: Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. RESULTS: For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. CONCLUSIONS: First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Salmão/genética , Seleção Genética , Alaska , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Ecossistema , Deriva Genética , Genótipo , Geografia , Desequilíbrio de Ligação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...