Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 75(6): 231-243, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573204

RESUMO

Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.


Assuntos
Evolução Biológica , Células Eucarióticas/citologia , Filamentos Intermediários , Células Procarióticas/citologia , Animais
2.
J Eukaryot Microbiol ; 62(5): 694-700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25847055

RESUMO

Proteins with membrane occupation and recognition nexus (MORN) motifs are associated with cell fission in apicomplexan parasites, chloroplast division in Arabidopsis and the motility of sperm cells. We found that ciliates are among those that encode the largest variety of MORN proteins. Tetrahymena thermophila expresses 129 MORN protein-encoding genes, some of which are specifically up-regulated during conjugation. A lipid-binding assay underpins the assumption that the predominant function of MORN motifs themselves is to confer the ability of lipid binding. The localisation of four MORN candidate proteins with similar characteristics highlights the functional diversity of this group especially in ciliates.


Assuntos
Motivos de Aminoácidos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/química , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Metabolismo dos Lipídeos , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/isolamento & purificação , Tetrahymena thermophila/genética
3.
Biochim Biophys Acta ; 1853(9): 2104-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25764978

RESUMO

Bax inhibitor-1 (BI-1) is an evolutionarily conserved pH-dependent Ca²âº leak channel in the endoplasmic reticulum and the founding member of a family of six highly hydrophobic mammalian proteins named transmembrane BAX inhibitor motif containing (TMBIM) 1-6 with BI-1 being TMBIM6. Here we compared the structure, subcellular localization, tissue expression and the effect on the cellular Ca²âº homeostasis of all family members side by side. We found that all TMBIM proteins possess the di-aspartyl pH sensor responsible for pH sensing identified in TMBIM6 and its bacterial homologue BsYetJ. TMBIM1-3 and TMBIM4-6 represent two phylogenetically distinct groups that are localized in the Golgi apparatus (TMBIM1-3), endoplasmic reticulum (TMBIM4-6) or mitochondria (TMBIM5) but share a common structure of at least seven transmembrane domains with the last domain being semi-hydrophobic. TMBIM1 is mainly expressed in muscle, TMBIM2 and 3 in the nervous system, TMBIM4 and 5 are ubiquitously expressed and TMBIM6 in skeletal muscle, kidney, liver and spleen. All TMBIM proteins reduce the Ca²âº content of the endoplasmic reticulum, and all but TMBIM5 also reduce the cytosolic resting Ca²âº concentration. These results suggest that the TMBIM family has comparable functions in the maintenance of intracellular Ca²âº homeostasis in a wide variety of tissues. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/fisiologia , Complexo de Golgi/metabolismo , Homeostase/fisiologia , Proteínas de Membrana/biossíntese , Motivos de Aminoácidos , Linhagem Celular , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Proteínas de Membrana/genética , Especificidade de Órgãos/fisiologia
4.
Genome Biol Evol ; 5(12): 2540-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24336424

RESUMO

Plastids sequestered by sacoglossan sea slugs have long been a puzzle. Some sacoglossans feed on siphonaceous algae and can retain the plastids in the cytosol of their digestive gland cells. There, the stolen plastids (kleptoplasts) can remain photosynthetically active in some cases for months. Kleptoplast longevity itself challenges current paradigms concerning photosystem turnover, because kleptoplast photosystems remain active in the absence of nuclear algal genes. In higher plants, nuclear genes are essential for plastid maintenance, in particular, for the constant repair of the D1 protein of photosystem II. Lateral gene transfer was long suspected to underpin slug kleptoplast longevity, but recent transcriptomic and genomic analyses show that no algal nuclear genes are expressed from the slug nucleus. Kleptoplast genomes themselves, however, appear expressed in the sequestered state. Here we present sequence data for the chloroplast genome of Acetabularia acetabulum, the food source of the sacoglossan Elysia timida, which can maintain Acetabularia kleptoplasts in an active state for months. The data reveal what might be the key to sacoglossan kleptoplast longevity: plastids that remain photosynthetically active within slugs for periods of months share the property of encoding ftsH, a D1 quality control protease that is essential for photosystem II repair. In land plants, ftsH is always nuclear encoded, it was transferred to the nucleus from the plastid genome when Charophyta and Embryophyta split. A replenishable supply of ftsH could, in principle, rescue kleptoplasts from D1 photodamage, thereby influencing plastid longevity in sacoglossan slugs.


Assuntos
Acetabularia/genética , Carboxipeptidases/fisiologia , Gastrópodes/fisiologia , Proteínas de Plantas/fisiologia , Plastídeos/genética , Pró-Proteína Convertases/fisiologia , Proteínas de Algas , Animais , Carboxipeptidases/genética , Cloroplastos/genética , Genomas de Plastídeos , Proteínas de Plantas/genética , Pró-Proteína Convertases/genética
5.
Cell Calcium ; 50(3): 251-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21663964

RESUMO

Bax inhibitor-1 (BI-1) was initially identified for its ability to inhibit BAX-induced apoptosis in yeast cells and is the founding member of a family of highly hydrophobic proteins localized in diverse cellular membranes. It is evolutionarily conserved and orthologues from plants can substitute for mammalian BI-1 in regard to its anti-apoptotic function suggesting a high degree of functional conservation. BI-1 interacts with BCL-2 and BCL-XL and, similar to these two anti-apoptotic proteins, the effect of BI-1 on cell death involves changes in the amount of Ca(2+) releasable from intracellular stores. However, BI-1 is also a negative regulator of the endoplasmic reticulum stress sensor IRE1 α, it interacts with G-actin and increases actin polymerization, enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger, and reduces the production of reactive oxygen species through direct interaction with NADPH-P450 reductase. In this contribution, we summarize what is known about the expression, intracellular localization and structure of BI-1 and specifically illuminate its effects on the intracellular Ca(2+) homeostasis and how this might relate to its other functions. We also present a thorough phylogenetic analysis of BI-1 proteins from major phyla together with paralogues from all BI-1 family members.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Morte Celular , Endorribonucleases/metabolismo , Homeostase , Humanos , Mamíferos , Proteínas de Membrana/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Neoplasias/metabolismo , Filogenia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...