Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 50(22): 12768-12789, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36477312

RESUMO

Genotoxic agents, that are used in cancer therapy, elicit the reprogramming of the transcriptome of cancer cells. These changes reflect the cellular response to stress and underlie some of the mechanisms leading to drug resistance. Here, we profiled genome-wide changes in pre-mRNA splicing induced by cisplatin in breast cancer cells. Among the set of cisplatin-induced alternative splicing events we focused on COASY, a gene encoding a mitochondrial enzyme involved in coenzyme A biosynthesis. Treatment with cisplatin induces the production of a short isoform of COASY lacking exons 4 and 5, whose depletion impedes mitochondrial function and decreases sensitivity to cisplatin. We identified RBM39 as a major effector of the cisplatin-induced effect on COASY splicing. RBM39 also controls a genome-wide set of alternative splicing events partially overlapping with the cisplatin-mediated ones. Unexpectedly, inactivation of RBM39 in response to cisplatin involves its interaction with the AP-1 family transcription factor c-Jun that prevents RBM39 binding to pre-mRNA. Our findings therefore uncover a novel cisplatin-induced interaction between a splicing regulator and a transcription factor that has a global impact on alternative splicing and contributes to drug resistance.


Assuntos
Processamento Alternativo , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteínas de Ligação a RNA , Fatores de Transcrição , Processamento Alternativo/genética , Cisplatino/farmacologia , Cisplatino/metabolismo , Dano ao DNA , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Humanos , Animais
3.
J Photochem Photobiol B ; 222: 112258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34399205

RESUMO

Photodynamic therapy (PDT) is an approved therapeutic approach and an alternative to conventional chemotherapy for the treatment of several types of cancer with the advantages of reducing the side effects and developing resistance mechanisms. Here, was evaluated the photosensitization capabilities of 5,10,15,20-tetrakis[4-(pyridinium-1-yl-methyl)phenyl]porphyrin (3), its N-confused isomer (4) and of the neutral precursors (1) and (2) and the results were compared with the ones obtained with the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP). Both regular porphyrin derivatives 1 and 3 showed higher efficiency to generate singlet oxygen than TMPyP. The PDT assays towards MCF-7 cells under red light irradiation (λ > 640 nm, 23.7 mW cm-2) demonstrated that the cationic porphyrin 3 is an efficient photosensitizer to kill MCF-7 breast cancer cells. The study of the cell death mechanisms induced by the photodynamic process showed that the studied porphyrin 3 and TMPyP caused cell death by autophagic flux and necrosis.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Apoptose/efeitos da radiação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Humanos , Luz , Células MCF-7 , Microscopia Confocal , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/uso terapêutico , Oxigênio Singlete/metabolismo
4.
Nat Commun ; 11(1): 1270, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152280

RESUMO

Prolonged cell survival occurs through the expression of specific protein isoforms generated by alternate splicing of mRNA precursors in cancer cells. How alternate splicing regulates tumor development and resistance to targeted therapies in cancer remain poorly understood. Here we show that RNF113A, whose loss-of-function causes the X-linked trichothiodystrophy, is overexpressed in lung cancer and protects from Cisplatin-dependent cell death. RNF113A is a RNA-binding protein which regulates the splicing of multiple candidates involved in cell survival. RNF113A deficiency triggers cell death upon DNA damage through multiple mechanisms, including apoptosis via the destabilization of the prosurvival protein MCL-1, ferroptosis due to enhanced SAT1 expression, and increased production of ROS due to altered Noxa1 expression. RNF113A deficiency circumvents the resistance to Cisplatin and to BCL-2 inhibitors through the destabilization of MCL-1, which thus defines spliceosome inhibitors as a therapeutic approach to treat tumors showing acquired resistance to specific drugs due to MCL-1 stabilization.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Ligados ao Cromossomo X , Spliceossomos/metabolismo , Síndromes de Tricotiodistrofia/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Processamento Alternativo/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Cisplatino/farmacologia , Citoproteção/efeitos dos fármacos , Dano ao DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(7): 1017-1030, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953761

RESUMO

NLRP3 inflammasome plays a key role in Western diet-induced systemic inflammation and was recently shown to mediate long-lasting trained immunity in myeloid cells. Saturated fatty acids (SFAs) are sterile triggers able to induce the assembly of the NLRP3 inflammasome in macrophages, leading to IL-1ß secretion while unsaturated ones (UFAs) prevent SFAs-mediated NLRP3 activation. Unlike previous studies using LPS-primed bone marrow derived macrophages, we do not see any ROS or IRE-1α involvement in SFAs-mediated NLRP3 activation in human monocytes-derived macrophages. Rather we show that SFAs need to enter the cells and to be activated into acyl-CoA to lead to NLRP3 activation in human macrophages. However, their ß-oxidation is dispensable. Instead, they are channeled towards phospholipids but redirected towards lipid droplets containing triacylglycerol in the presence of UFAs. Lipidomic analyses and Laurdan fluorescence experiments demonstrate that SFAs induce a dramatic saturation of phosphatidylcholine (PC) correlated with a loss of membrane fluidity, both events inhibited by UFAs. The silencing of CCTα, the key enzyme in PC synthesis, prevents SFA-mediated NLRP3 activation, demonstrating the essential role of the de novo PC synthesis. This SFA-induced membrane remodeling promotes a disruption of the plasma membrane Na, K-ATPase, instigating a K+ efflux essential and sufficient for NLRP3 activation. This work opens novel therapeutic avenues to interfere with Western diet-associated diseases such as those targeting the glycerolipid pathway.


Assuntos
Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Transporte Biológico , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Fosfolipídeos/metabolismo
6.
Oncogenesis ; 8(3): 21, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850580

RESUMO

Colon adenocarcinoma is the third most commonly diagnosed cancer and the second deadliest one. Metabolic reprogramming, described as an emerging hallmark of malignant cells, includes the predominant use of glycolysis to produce energy. Recent studies demonstrated that mitochondrial electron transport chain inhibitor reduced colon cancer tumour growth. Accumulating evidence show that myoferlin, a member of the ferlin family, is highly expressed in several cancer types, where it acts as a tumour promoter and participates in the metabolic rewiring towards oxidative metabolism. In this study, we showed that myoferlin expression in colon cancer lesions is associated with low patient survival and is higher than in non-tumoural adjacent tissue. Human colon cancer cells silenced for myoferlin exhibit a reduced oxidative phosphorylation activity associated with mitochondrial fission leading, ROS accumulation, decreased cell growth, and increased apoptosis. We observed the triggering of a DNA damage response culminating to a cell cycle arrest in wild-type p53 cells. The use of a p53 null cell line or a compound able to restore p53 activity (Prima-1) reverted the effects induced by myoferlin silencing, confirming the involvement of p53. The recent identification of a compound interacting with a myoferlin C2 domain and bearing anticancer potency identifies, together with our demonstration, this protein as a suitable new therapeutic target in colon cancer.

7.
Biochem Pharmacol ; 153: 217-229, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29371029

RESUMO

Overexpression of the ubiquitous type II melanoma antigen-D2 (MAGED2) in numerous types of cancer suggests that this protein contributes to carcinogenesis, a well-documented characteristic of other MAGE proteins. Modification of MAGED2 intracellular localization during cell cycle phases and following treatment with camptothecin (CPT) and phosphorylation by ATM/ATR following ionizing irradiation led us to investigate the molecular functions of MAGED2 in the cellular response to DNA damage. Cell cycle regulators, cell cycle progression, and bromodeoxyuridine (BrdU) incorporation were compared between MAGED2-sufficient and -depleted U2OS cells following exposure to CPT. At 24 h post-CPT removal, MAGED2-depleted cells had lower levels of p21 and p27, and there was an increase in S phase BrdU-positive cells with a concurrent decrease in cells in G2. These cell cycle modifications were p21-independent, but ATR-, SKP2-, and CDC20-dependent. Importantly, while MAGED2 depletion reduced CHK2 phosphorylation after 8 h of CPT treatment, it enhanced and prolonged CHK1 phosphorylation after a 24 h recovery period, indicating sustained ATR activation. MAGED2 depletion had no impact on cell survival under our experimental conditions. In summary, our data indicate that MAGED2 reduced CPT-related replicative stress, suggesting a role for this protein in genomic stability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas de Ciclo Celular/deficiência , Sobrevivência Celular/fisiologia , Células HeLa , Humanos
8.
Oncotarget ; 7(39): 63708-63721, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27563812

RESUMO

Glioblastoma (GBM) represents the most aggressive and common solid human brain tumor. We have recently demonstrated the importance of osteopontin (OPN) in the acquisition/maintenance of stemness characters and tumorigenicity of glioma initiating cells. Consultation of publicly available TCGA database indicated that high OPN expression correlated with poor survival in GBM patients. In this study, we explored the role of OPN in GBM radioresistance using an OPN-depletion strategy in U87-MG, U87-MG vIII and U251-MG human GBM cell lines. Clonogenic experiments showed that OPN-depleted GBM cells were sensitized to irradiation. In comet assays, these cells displayed higher amounts of unrepaired DNA fragments post-irradiation when compared to control. We next evaluated the phosphorylation of key markers of DNA double-strand break repair pathway. Activating phosphorylation of H2AX, ATM and 53BP1 was significantly decreased in OPN-deficient cells. The addition of recombinant OPN prior to irradiation rescued phospho-H2AX foci formation thus establishing a new link between DNA repair and OPN expression in GBM cells. Finally, OPN knockdown improved mice survival and induced a significant reduction of heterotopic human GBM xenograft when combined with radiotherapy. This study reveals a new function of OPN in DNA damage repair process post-irradiation thus further confirming its major role in GBM aggressive disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Reparo do DNA , Glioblastoma/metabolismo , Osteopontina/metabolismo , Tolerância a Radiação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Ensaio Cometa , Quebras de DNA de Cadeia Dupla , Feminino , Inativação Gênica , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Osteopontina/genética , Fosforilação , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo
9.
Biochim Biophys Acta ; 1863(4): 581-95, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26705694

RESUMO

Melanoma antigen D2 (MAGE-D2) is recognized as a cancer diagnostic marker; however, it has poorly characterized functions. Here, we established its intracellular localization and shuttling during cell cycle progression and in response to cellular stress. In normal conditions, MAGE-D2 is present in the cytoplasm, nucleoplasm, and nucleoli. Within the latter, MAGE-D2 is mostly found in the granular and the dense fibrillar components, and it interacts with nucleolin. Transfection of MAGE-D2 deletion mutants demonstrated that Δ203-254 leads to confinement of MAGE-D2 to the cytoplasm, while Δ248-254 prevents its accumulation in nucleoli but still allows its presence in the nucleoplasm. Consequently, this short sequence belongs to a nucleolar localization signal. MAGE-D2 deletion does not alter the nucleolar organization or rRNA levels. However, its intracellular localization varies with the cell cycle in a different kinetic than nucleolin. After genotoxic and nucleolar stresses, MAGE-D2 is excluded from nucleoli and concentrates in the nucleoplasm. We demonstrated that its camptothecin-related delocalization results from two distinct events: a rapid nucleolar release and a slower phospho-ERK-dependent cytoplasm to nucleoplasm translocation, which results from an increased flux from the cytoplasm to nucleoplasm. In conclusion, MAGE-D2 is a dynamic protein whose shuttling properties could suggest a role in cell cycle regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Ciclo Celular/fisiologia , Estresse Fisiológico/fisiologia , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Células MCF-7 , Transporte Proteico , Células Tumorais Cultivadas
10.
BMC Cancer ; 15: 227, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25884497

RESUMO

BACKGROUND: Modification of splicing by chemotherapeutic drugs has usually been evaluated on a limited number of pre-mRNAs selected for their recognized or potential importance in cell proliferation or apoptosis. However, the pathways linking splicing alterations to the efficiency of cancer therapy remain unclear. METHODS: Next-generation sequencing was used to analyse the transcriptome of breast carcinoma cells treated by cisplatin. Pharmacological inhibitors, RNA interference, cells deficient in specific signalling pathways, RT-PCR and FACS analysis were used to investigate how the anti-cancer drug cisplatin affected alternative splicing and the cell death pathway. RESULTS: We identified 717 splicing events affected by cisplatin, including 245 events involving cassette exons. Gene ontology analysis indicates that cell cycle, mRNA processing and pre-mRNA splicing were the main pathways affected. Importantly, the cisplatin-induced splicing alterations required class I PI3Ks P110ß but not components such as ATM, ATR and p53 that are involved in the DNA damage response. The siRNA-mediated depletion of the splicing regulator SRSF4, but not SRSF6, expression abrogated many of the splicing alterations as well as cell death induced by cisplatin. CONCLUSION: Many of the splicing alterations induced by cisplatin are caused by SRSF4 and they contribute to apoptosis in a process requires class I PI3K.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Precursores de RNA/genética , Splicing de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Fatores de Processamento de Serina-Arginina , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
J Biol Chem ; 287(35): 29213-26, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22700971

RESUMO

NOD2 is one of the best characterized members of the cytosolic NOD-like receptor family. NOD2 is able to sense muramyl dipeptide, a specific bacterial cell wall component, and to subsequently induce various signaling pathways leading to NF-κB activation and autophagy, both events contributing to an efficient innate and adaptive immune response. Interestingly, loss-of-function NOD2 variants were associated with a higher susceptibility for Crohn disease, which highlights the physiological importance of proper regulation of NOD2 activity. We performed a biochemical screen to search for new NOD2 regulators. We identified a new NOD2 partner, c-Jun N-terminal kinase-binding protein 1 (JNKBP1), a scaffold protein characterized by an N-terminal WD-40 domain. JNKBP1, through its WD-40 domain, binds to NOD2 following muramyl dipeptide activation. This interaction attenuates NOD2-mediated NF-κB activation and IL-8 secretion as well as NOD2 antibacterial activity. JNKBP1 exerts its repressor effect by disturbing NOD2 oligomerization and RIP2 tyrosine phosphorylation, both steps required for downstream NOD2 signaling. We furthermore showed that JNKBP1 and NOD2 are co-expressed in the human intestinal epithelium and in immune cells recruited in the lamina propria, which suggests that JNKBP1 contributes to maintain NOD2-mediated intestinal immune homeostasis.


Assuntos
Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Multimerização Proteica/fisiologia , Transdução de Sinais/fisiologia , Células HEK293 , Humanos , Interleucina-8/imunologia , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Células Jurkat , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Células U937
12.
PLoS One ; 7(6): e38246, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22715377

RESUMO

The NF-κB pathway is involved in immune and inflammation responses, proliferation, differentiation and cell death or survival. It is activated by many external stimuli including genotoxic stress. DNA double-strand breaks activate NF-κB in an ATM-dependent manner. In this manuscript, a direct interaction between p65(RelA) and the N-terminal extremity of ATM is reported. We also report that only one of the five potential ATM-(S/T)Q target sites present in p65, namely Ser(547), is specifically phosphorylated by ATM in vitro. A comparative transcriptomic analysis performed in HEK-293 cells expressing either wild-type HA-p65 or a non-phosphorylatable mutant HA-p65(S547A) identified several differentially transcribed genes after an etoposide treatment (e.g. IL8, A20, SELE). The transcription of these genes is increased in cells expressing the mutant. Substitution of Ser(547) to alanine does not affect p65 binding abilities on the κB site of the IL8 promoter but reduces p65 interaction with HDAC1. Cells expressing p65(S547A) have a higher level of histone H3 acetylated on Lys(9) at the IL8 promoter, which is in agreement with the higher gene induction observed. These results indicate that ATM regulates a sub-set of NF-κB dependent genes after a genotoxic stress by direct phosphorylation of p65.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Elementos de Resposta , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Substituição de Aminoácidos , Antineoplásicos Fitogênicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Etoposídeo/farmacologia , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fator de Transcrição RelA/genética
13.
Am J Respir Cell Mol Biol ; 47(1): 67-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22343222

RESUMO

Tracheobronchial squamous metaplasia is common in smokers, and is associated with both airway obstruction in chronic obstructive pulmonary disease (COPD) and increased risk of lung cancer. Although this reversible epithelial replacement is almost always observed in association with chronic inflammation, the role of inflammatory mediators in the pathogenesis of squamous metaplasia remains unclear. In the present study, we investigated the implication of cigarette smoke-mediated proinflammatory cytokine up-regulation in the development and treatment of tracheobronchial epithelial hyperplasia and squamous metaplasia. Using immunohistological techniques, we showed a higher epithelial expression of TNF-α, IL-1ß, and IL-6, as well as an activation of NF-κB and activator protein-1/mitogen-activated protein kinase signaling pathways in the respiratory tract of smoking patients, compared with the normal ciliated epithelium of nonsmoking patients. In addition, we demonstrated that these signaling pathways strongly influence the proliferation and differentiation state of in vitro-generated normal human airway epithelial basal cells. Finally, we exposed mice to cigarette smoke for 16 weeks, and demonstrated that anti-TNF-α (etanercept), anti-IL-1ß (anakinra), and/or anti-IL-6R (tocilizumab) therapies significantly reduced epithelial hyperplasia and the development of squamous metaplasia. These data highlight the importance of soluble inflammatory mediators in the pathogenesis of tracheobronchial squamous metaplasia. Therefore, the administration of proinflammatory cytokine antagonists may have clinical applications in the management of patients with COPD.


Assuntos
Brônquios/patologia , Citocinas/metabolismo , Fumaça/efeitos adversos , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Células Cultivadas , Citocinas/antagonistas & inibidores , Etanercepte , Humanos , Hiperplasia , Imunoglobulina G/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Receptores do Fator de Necrose Tumoral , Fumar/efeitos adversos , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
14.
Biochem Pharmacol ; 82(10): 1371-83, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21872579

RESUMO

Alteration of the genome integrity leads to the activation of a vast network of cellular responses named "DNA damage response". Three kinases from the phosphoinositide 3-kinase-like protein kinase family regulate this network; ATM and DNA-PK both activated by DNA double-strand breaks and ATR activated by replication blocks. "DNA damage response" pathway coordinates cell cycle arrest, DNA repair, and the activation of transcription factors such as p53 and NF-κB. It controls senescence/apoptosis/survival of the damaged cells. Cell death or survival result from a tightly regulated balance between antagonist pro- and anti-apoptotic signals. NF-κB is a key transcription factor involved in immunity, inflammation and cell transformation. When activated by DNA double-strand breaks, NF-κB has most often a pro-survival effect and thereof interferes with chemotherapy treatments that often rely on DNA damage to induce tumor cell death (i.e. topoisomerase inhibitors and ionizing radiation). NF-κB is thus an important pharmaceutical target. Agents leading to replication stress induce a pro-apoptotic NF-κB. The molecular mechanisms initiated by DNA lesions leading to NF-κB nuclear translocation have been extensively studied these last years. In this review, we will focus on ATM, ATR and DNA-PK functions both in the IKKα/IKKß/NEMO-dependent or -independent signaling pathways and on the regulation they can exercise at the promoter level of NF-κB regulated genes.


Assuntos
Dano ao DNA/fisiologia , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Apoptose/fisiologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Humanos , Proteínas I-kappa B/genética , Fosfatidilinositol 3-Quinase/genética
15.
PLoS One ; 6(2): e16870, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21347389

RESUMO

The innate immune response constitutes the first line of host defence that limits viral spread and plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host pathogen recognition receptors triggering the activation of IRF3. IRF3, along with NF-κB, is a key regulator of IFN-ß expression. Until now, the role of IRF3 in the activation of the innate immune response during Varicella-Zoster Virus (VZV) infection has been poorly studied. In this work, we demonstrated for the first time that VZV rapidly induces an atypical phosphorylation of IRF3 that is inhibitory since it prevents subsequent IRF3 homodimerization and induction of target genes. Using a mutant virus unable to express the viral kinase ORF47p, we demonstrated that (i) IRF3 slower-migrating form disappears; (ii) IRF3 is phosphorylated on serine 396 again and recovers the ability to form homodimers; (iii) amounts of IRF3 target genes such as IFN-ß and ISG15 mRNA are greater than in cells infected with the wild-type virus; and (iv) IRF3 physically interacts with ORF47p. These data led us to hypothesize that the viral kinase ORF47p is involved in the atypical phosphorylation of IRF3 during VZV infection, which prevents its homodimerization and subsequent induction of target genes such as IFN-ß and ISG15.


Assuntos
Herpesvirus Humano 3/enzimologia , Imunidade Inata/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Proteínas Virais/farmacologia , Animais , Células HEK293 , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Humanos , Fator Regulador 3 de Interferon/química , Camundongos , Mutação , Fosforilação/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína
16.
Biochem Pharmacol ; 81(5): 606-16, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21182827

RESUMO

Glioblastoma constitute the most frequent and deadliest brain tumors of astrocytic origin. They are very resistant to all current therapies and are associated with a huge rate of recurrence. In most cases, this type of tumor is characterized by a constitutive activation of the nuclear factor-kappaB (NF-κB). This factor is known to be a key regulator of various physiological processes such as inflammation, immune response, cell growth or apoptosis. In the present study, we explored the role of NF-κB activation in the sensitivity of human glioblastoma cells to a treatment by 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT). 5-ALA is a physiological compound widely used in PDT as well as in tumor photodetection (PDD). Our results show that inhibition of NF-κB improves glioblastoma cell death in response to 5-ALA-PDT. We then studied the molecular mechanisms underlying the cell death induced by PDT combined or not with NF-κB inhibition. We found that apoptosis was induced by PDT but in an incomplete manner and that, unexpectedly, NF-κB inhibition reduced its level. Oppositely PDT mainly induces necrosis in glioblastoma cells and NF-κB is found to have anti-necrotic functions in this context. The autophagic flux was also enhanced as a result of 5-ALA-PDT and we demonstrate that stimulation of autophagy acts as a pro-survival mechanism confering protection against PDT-mediated necrosis. These data point out that 5-ALA-PDT has an interesting potential as a mean to treat glioblastoma and that inhibition of NF-κB renders glioblastoma cells more sensitive to the treatment.


Assuntos
Ácido Aminolevulínico/farmacologia , NF-kappa B/antagonistas & inibidores , Fármacos Fotossensibilizantes/farmacologia , Apoptose , Autofagia , Neoplasias Encefálicas , Glioblastoma , Humanos , NF-kappa B/metabolismo , Necrose , Fotoquimioterapia , Transdução de Sinais
17.
J Cell Biol ; 179(6): 1261-73, 2007 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-18086921

RESUMO

Ultraviolet B and genotoxic drugs induce the expression of a vascular endothelial growth factor A (VEGF-A) splice variant (VEGF111) encoded by exons 1-4 and 8 in many cultured cells. Although not detected in a series of normal human and mouse tissue, VEGF111 expression is induced in MCF-7 xenografts in nude mice upon treatment by camptothecin. The skipping of exons that contain proteolytic cleavage sites and extracellular matrix-binding domains makes VEGF111 diffusible and resistant to proteolysis. Recombinant VEGF111 activates VEGF receptor 2 (VEGF-R2) and extracellularly regulated kinase 1/2 in human umbilical vascular endothelial cells and porcine aortic endothelial cells expressing VEGF-R2. The mitogenic and chemotactic activity and VEGF111's ability to promote vascular network formation during embyonic stem cell differentiation are similar to those of VEGF121 and 165. Tumors in nude mice formed by HEK293 cells expressing VEGF111 develop a more widespread network of numerous small vessels in the peritumoral tissue than those expressing other isoforms. Its potent angiogenic activity and remarkable resistance to proteolysis makes VEGF111 a potential adverse factor during chemotherapy but a beneficial therapeutic tool for ischemic diseases.


Assuntos
Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Camptotecina/farmacologia , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Glicosilação , Humanos , Hipoglicemia/metabolismo , Hipóxia/metabolismo , Camundongos , Camundongos Nus , Mutagênicos/farmacologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos/metabolismo , Raios Ultravioleta , Fator A de Crescimento do Endotélio Vascular/genética
18.
J Biol Chem ; 282(21): 15383-93, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17409387

RESUMO

NF-kappaB is a crucial transcription factor tightly regulated by protein interactions and post-translational modifications, like phosphorylation and acetylation. A previous study has shown that trichostatin A (TSA), a histone deacetylase inhibitor, potentiates tumor necrosis factor (TNF) alpha-elicited NF-kappaB activation and delays IkappaBalpha cytoplasmic reappearance. Here, we demonstrated that TSA also prolongs NF-kappaB activation when induced by the insulino-mimetic pervanadate (PV), a tyrosine phosphatase inhibitor that initiates an atypical NF-kappaB signaling. This extension is similarly correlated with delayed IkappaBalpha cytoplasmic reappearance. However, whereas TSA causes a prolonged IKK activity when added to TNFalpha, it does not when added to PV. Instead, quantitative reverse transcriptase-PCR revealed a decrease of ikappabalpha mRNA level after TSA addition to PV stimulation. This synthesis deficit of the inhibitor could explain the sustained NF-kappaB residence in the nucleus. In vivo analysis by chromatin immunoprecipitation assays uncovered that, for PV induction but not for TNFalpha, the presence of TSA provokes several impairments on the ikappabalpha promoter: (i) diminution of RNA Pol II recruitment; (ii) reduced acetylation and phosphorylation of histone H3-Lys(14) and -Ser(10), respectively; (iii) decreased presence of phosphorylated p65-Ser(536); and (iv) reduction of IKKalpha binding. The recruitment of these proteins on the icam-1 promoter, another NF-kappaB-regulated gene, is not equally affected, suggesting a promoter specificity of PV with TSA stimulation. Taken together, these data suggest that TSA acts differently depending on the NF-kappaB pathway and the targeted promoter in question. This indicates that one overall histone deacetylase role is to inhibit NF-kappaB activation by molecular mechanisms specific of the stimulus and the promoter.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Proteínas I-kappa B/biossíntese , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Vanadatos/farmacologia , Acetilação/efeitos dos fármacos , Inibidores Enzimáticos/agonistas , Células HeLa , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/agonistas , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Inibidor de NF-kappaB alfa , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/agonistas , Vanadatos/agonistas
19.
Biochem Pharmacol ; 72(9): 1132-41, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-16965765

RESUMO

Cellular response to DNA damage is complex and relies on the simultaneous activation of different networks. It involves DNA damage recognition, repair, and induction of signalling cascades leading to cell cycle checkpoint activation, apoptosis, and stress related responses. The fate of damaged cells depends on the balance between pro- and antiapoptotic signals. In this decisive life or death choice, the transcription factor NF-kappaB has emerged as a prosurvival actor in most cell types. As corollary, it appears to be associated with tumorigenic process and resistance to therapeutic strategies as it protects cancerous cells from death. In this review, we will focus on NF-kappaB activation by double-strand breaks inducing agents, such as ionizing radiation and DNA topoisomerase I and II inhibitors routinely used in cancer therapy. Coinciding with the 20th anniversary of the NF-kappaB discovery, major steps of the DSB-triggered cascade have been recently identified. Two parallel cascades are necessary for NF-kappaB activation. The first one depends on ATM (activated by double-strand breaks) and the second on PIDD (activated by an unknown stress signal). The phosphorylation of NEMO by ATM is the point of convergence of these two cascades. The identification of ATM/NEMO complex as the long searched "nuclear to cytoplasm" signal leading to IKK activation is also a major piece of the puzzle. The knowledge of the precise steps leading to DSB-initiated NF-kappaB activation will allow the development of specific blocking compounds reducing its prosurvival function.


Assuntos
Dano ao DNA/fisiologia , NF-kappa B/metabolismo , RNA de Cadeia Dupla/fisiologia , Animais , Apoptose/genética , Humanos , NF-kappa B/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia
20.
Oncogene ; 23(53): 8649-58, 2004 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-15467759

RESUMO

Photodynamic therapy (PDT) is a treatment for cancer and several noncancerous proliferating cell diseases that depends on the uptake of a photosensitizing compound followed by selective irradiation with visible light. In the presence of oxygen, irradiation leads to the production of reactive oxygen species (ROS). A large production of ROS induces the death of cancer cells by apoptosis or necrosis. A small ROS production can activate various cellular pathways. Here, we show that PDT by pyropheophorbide-a methyl ester (PPME) induces the activation of nuclear factor kappa B (NF-kappaB) in HMEC-1 cells. NF-kappaB is active since it binds to the NF-kappaB sites of both ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) promoters and induces the transcription of several NF-kappaB target genes such as those of IL-6, ICAM-1, VCAM-1. In contrast, expression of ICAM-1 and VCAM-1 at the protein level was not observed, although we measured an IL-6 secretion. Using specific chemical inhibitors, we showed that the lack of ICAM-1 and VCAM-1 expression is the consequence of their degradation by lysosomal proteases. The proteasome and calpain pathways were not involved. All these observations were consistent with the fact that no adhesion of granulocytes was observed in these conditions.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Fotoquimioterapia , Molécula 1 de Adesão de Célula Vascular/genética , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Inflamação/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , NF-kappa B/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Porfirinas/farmacologia , Ligação Proteica , Transcrição Gênica/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...