Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952269

RESUMO

The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.

2.
Oecologia ; 204(3): 661-673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448764

RESUMO

Indirect interactions are pivotal in the evolution of interacting species and the assembly of populations and communities. Nevertheless, despite recently being investigated in plant-animal mutualism at the community level, indirect interactions have not been studied in resource-mediated mutualisms involving plant individuals that share different animal species as partners within a population (i.e., individual-based networks). Here, we analyzed an individual-based ant-plant network to evaluate how resource properties affect indirect interaction patterns and how changes in indirect links leave imprints in the network across multiple levels of network organization. Using complementary analytical approaches, we described the patterns of indirect interactions at the micro-, meso-, and macro-scale. We predicted that plants offering intermediate levels of nectar quantity and quality interact with more diverse ant assemblages. The increased number of ant species would cause a higher potential for indirect interactions in all scales evaluated. We found that nectar properties modified patterns of indirect interactions of plant individuals that share mutualistic partners, leaving imprints across different network scales. To our knowledge, this is the first study tracking indirect interactions in multiple scales within an individual-based network. We show that functional traits of interacting species, such as nectar properties, may lead to changes in indirect interactions, which could be tracked across different levels of the network organization evaluated.


Assuntos
Formigas , Mirmecófitas , Animais , Néctar de Plantas , Plantas , Simbiose
4.
Ann Bot ; 123(2): 311-325, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30099492

RESUMO

Background and Aims: Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods: The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results: Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions: Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades.


Assuntos
Apocynaceae/genética , Evolução Biológica , Insetos , Polinização/genética , Animais , Biodiversidade , Aves
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...