Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(17): 4814-4828, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454286

RESUMO

The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef-building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes of Acropora cervicornis and A. palmata corals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent in A. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.


Assuntos
Antozoários , Animais , Antozoários/genética , Genótipo , Região do Caribe , Adaptação Fisiológica , Epigênese Genética , Recifes de Corais
2.
Ecol Evol ; 12(8): e9226, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36052296

RESUMO

Age information is often non-existent for most shark populations due to a lack of measurable physiological and morphological traits that can be used to estimate age. Recently, epigenetic clocks have been found to accurately estimate age for mammals, birds, and fish. However, since these clocks rely, among other things, on the availability of reference genomes, their application is hampered in non-traditional model organisms lacking such molecular resources. The technique known as Methyl-Sensitive Amplified Polymorphism (MSAP) has emerged as a valid alternative for studying DNA methylation biomarkers when reference genome information is missing, and large numbers of samples need to be processed. Accordingly, the MSAP technique was used in the present study to characterize global DNA methylation patterns in lemon sharks from three different age groups (juveniles, subadults, and adults). The obtained results reveal that, while MSAP analyses lack enough resolution as a standalone approach to infer age in these organisms, the global DNA methylation patterns observed using this technique displayed significant differences between age groups. Overall, these results confer that DNA methylation does change with age in sharks like what has been seen for other vertebrates and that MSAP could be useful as part of an epigenetics pipeline to infer the broad range of ages found in large samples sizes.

3.
Trends Ecol Evol ; 36(11): 1011-1023, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34366170

RESUMO

The apparent ability of corals to acquire and maintain enhanced stress tolerance through a dose-dependent environmental memory, which may persist for multiple years, has critical implications for coral reef conservation research. Such responses are variable across coral species and environmental stressors, with primed corals exhibiting a modified response to secondary stress exposures. While the mechanisms underlying coral memory responses are poorly understood, they likely involve both the coral host and microbiome. With advances in molecular technologies, it is now possible to investigate potential memory mechanisms in non-model organisms, including transcriptional regulation through epigenetic modifications. We integrate evidence of coral environmental memory and suggest future research directions to evaluate the potential for this process to enhance coral resilience under climate change.


Assuntos
Antozoários , Animais , Antozoários/genética , Mudança Climática , Recifes de Corais
4.
PeerJ ; 5: e3270, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560093

RESUMO

Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

5.
PeerJ ; 2: e348, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24765582

RESUMO

Biotic resistance is the idea that native species negatively affect the invasion success of introduced species, but whether this can occur at large spatial scales is poorly understood. Here we re-evaluated the hypothesis that native large-bodied grouper and other predators are controlling the abundance of exotic lionfish (Pterois volitans/miles) on Caribbean coral reefs. We assessed the relationship between the biomass of lionfish and native predators at 71 reefs in three biogeographic regions while taking into consideration several cofactors that may affect fish abundance, including among others, proxies for fishing pressure and habitat structural complexity. Our results indicate that the abundance of lionfish, large-bodied grouper and other predators were not negatively related. Lionfish abundance was instead controlled by several physical site characteristics, and possibly by culling. Taken together, our results suggest that managers cannot rely on current native grouper populations to control the lionfish invasion.

6.
PLoS One ; 8(7): e68259, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874565

RESUMO

Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.


Assuntos
Recifes de Corais , Ecossistema , Peixes/fisiologia , Comportamento Predatório/fisiologia , Animais , Biomassa , Região do Caribe , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...