Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Extracell Biol ; 3(1): e134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38938681

RESUMO

Extracellular vesicles (EVs) are crucial mediators of cell-to-cell communication in physiological and pathological conditions. Specifically, EVs released from the vasculature into blood were found to be quantitatively and qualitatively different in diseases compared to healthy states. However, our understanding of EVs derived from the lymphatic system is still scarce. In this study, we compared the mRNA and microRNA (miRNA) expression in blood vascular (BEC) and lymphatic (LEC) endothelial cells. After characterization of the EVs by fluorescence-triggered flow cytometry, nanoparticle tracking analysis and cryo-transmission electron microscopy (cryo-TEM) we utilized small RNA-sequencing to characterize miRNA signatures in the EVs and identify cell-type specific miRNAs in BEC and LEC. We found miRNAs specifically enriched in BEC and LEC on the cellular as well as the extracellular vesicle level. Our data provide a solid basis for further functional in vitro and in vivo studies addressing the role of EVs in the blood and lymphatic vasculature.

2.
Ann Surg ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881439

RESUMO

OBJECTIVE: The goal of this study was to characterize the microRNA (miRNA) expression signatures in patients with PHPT and identify miRNA biomarkers of bone homeostasis. SUMMARY BACKGROUND DATA: Primary hyperparathyroidism (PHPT) is associated with increased bone turnover and decreased bone mass. miRNA are markers of bone remodeling. METHODS: We performed a prospective case-control study of post-menopausal females with PHPT and control subjects matched for race, age, and BMD. We collected clinical and biochemical data, assessed BMD by dual-energy X-ray absorptiometry, and measured 27 serum miRNAs related to bone remodeling. We used linear regression to assess the correlation between miRNA levels, conventional biochemical markers and BMD. RESULTS: A total of 135 subjects were evaluated, including 49 with PHPT (discovery group), 47 control patients without PHPT, and an independent validation cohort of 39 PHPT patients. Of 27 miRNAs evaluated, nine (miR-335-5p, miR-130b-3p, miR-125b-5p, miR-23a-3p, miR-152-3p, miR-582-5p, miR-144-5p, miR-320a and miR-19b-3p) were differentially expressed in PHPT compared to matched control subjects. All nine differentially expressed miRNAs significantly correlated with levels of serum parathyroid hormone (PTH), and eight of the nine correlated with calcium levels. No differentially expressed miRNAs were consistently correlated with markers of BMD. Subjects with PHPT segregate from controls based on the signature of these nine miRNAs on principle component analysis. CONCLUSIONS: These data suggest that PHPT is characterized by a unique miRNA signature that is distinct from postmenopausal and idiopathic osteoporosis. Levels of specific miRNAs significantly correlate with PTH, suggesting that bone remodeling in PHPT may be mediated in part by PTH-induced changes in miRNA.

3.
Bone Jt Open ; 5(6): 479-488, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38839054

RESUMO

Aims: Current diagnostic tools are not always able to effectively identify periprosthetic joint infections (PJIs). Recent studies suggest that circulating microRNAs (miRNAs) undergo changes under pathological conditions such as infection. The aim of this study was to analyze miRNA expression in hip arthroplasty PJI patients. Methods: This was a prospective pilot study, including 24 patients divided into three groups, with eight patients each undergoing revision of their hip arthroplasty due to aseptic reasons, and low- and high-grade PJI, respectively. The number of intraoperative samples and the incidence of positive cultures were recorded for each patient. Additionally, venous blood samples and periarticular tissue samples were collected from each patient to determine miRNA expressions between the groups. MiRNA screening was performed by small RNA-sequencing using the miRNA next generation sequencing (NGS) discovery (miND) pipeline. Results: Overall, several miRNAs in plasma and tissue were identified to be progressively deregulated according to ongoing PJI. When comparing the plasma samples, patients with a high-grade infection showed significantly higher expression levels for hsa-miR-21-3p, hsa-miR-1290, and hsa-miR-4488, and lower expression levels for hsa-miR-130a-3p and hsa-miR-451a compared to the aseptic group. Furthermore, the high-grade group showed a significantly higher regulated expression level of hsa-miR-1260a and lower expression levels for hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-148b-5p, hsa-miR-301a-3p, hsa-miR-451a, and hsa-miR-454-3p compared to the low-grade group. No significant differences were found between the low-grade and aseptic groups. When comparing the tissue samples, the high-grade group showed significantly higher expression levels for 23 different miRNAs and lower expression levels for hsa-miR-2110 and hsa-miR-3200-3p compared to the aseptic group. No significant differences were found in miRNA expression between the high- and low-grade groups, as well as between the low-grade and aseptic groups. Conclusion: With this prospective pilot study, we were able to identify a circulating miRNA signature correlating with high-grade PJI compared to aseptic patients undergoing hip arthroplasty revision. Our data contribute to establishing miRNA signatures as potential novel diagnostic and prognostic biomarkers for PJI.

4.
Sci Rep ; 14(1): 13019, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844492

RESUMO

In recent years functional multiphoton (MP) imaging of vital mouse tissues and stimulation emission depletion (STED) imaging of optically cleared tissues allowed new insights into kidney biology. Here, we present a novel workflow where MP imaging of calcium signals can be combined with super-resolved STED imaging for morphological analysis of the slit diaphragm (SD) within the same glomerulus. Mice expressing the calcium indicator GCaMP3 in podocytes served as healthy controls or were challenged with two different doses of nephrotoxic serum (NTS). NTS induced glomerular damage in a dose dependent manner measured by shortening of SD length. In acute kidney slices (AKS) intracellular calcium levels increased upon disease but showed a high variation between glomeruli. We could not find a clear correlation between intracellular calcium levels and SD length in the same glomerulus. Remarkably, analysis of the SD morphology of glomeruli selected during MP calcium imaging revealed a higher percentage of completely disrupted SD architecture than estimated by STED imaging alone. Our novel co-imaging protocol is applicable to a broad range of research questions. It can be used with different tissues and is compatible with diverse reporters and target proteins.


Assuntos
Cálcio , Glomérulos Renais , Microscopia de Fluorescência por Excitação Multifotônica , Podócitos , Animais , Podócitos/metabolismo , Cálcio/metabolismo , Camundongos , Glomérulos Renais/metabolismo , Glomérulos Renais/ultraestrutura , Microscopia de Fluorescência por Excitação Multifotônica/métodos
5.
Thromb Res ; 237: 112-128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579513

RESUMO

BACKGROUND: Acute kidney injury (AKI) in sepsis patients increases patient mortality. Endothelial cells are important players in the pathophysiology of sepsis-associated AKI (SA-AKI), yet knowledge regarding their spatiotemporal involvement in coagulation disbalance and leukocyte recruitment is lacking. This study investigated the identity and kinetics of responses of different microvascular compartments in kidney cortex in response to SA-AKI. METHODS: Laser microdissected arterioles, glomeruli, peritubular capillaries, and postcapillary venules from kidneys of mice subjected to cecal ligation and puncture (CLP) were analyzed using RNA sequencing. Differential expression and pathway enrichment analyses identified genes involved in coagulation and inflammation. A selection of these genes was evaluated by RT-qPCR in microvascular compartments of renal biopsies from patients with SA-AKI. The role of two identified genes in lipopolysaccharide-induced endothelial coagulation and inflammatory activation were determined in vitro in HUVEC using siRNA-based gene silencing. RESULTS: CLP-sepsis in mice induced altered expression of approximately 400 genes in the renal microvasculature, with microvascular compartments exhibiting unique spatiotemporal responses. In mice, changes in gene expression related to coagulation and inflammation were most extensive in glomeruli at early and intermediate time points, with high induction of Plat, Serpine1, Thbd, Icam1, Stat3, and Ifitm3. In human SA-AKI, PROCR and STAT3 were induced in postcapillary venules, while SERPINE1 expression was diminished. IFITM3 was increased in arterioles and glomeruli. In vitro studies revealed that STAT3 and IFITM3 partly control endothelial coagulation and inflammatory activation. CONCLUSION: Renal microvascular compartments in mice and humans exhibited heterogeneous changes in coagulation- and inflammation-related gene expression in response to SA-AKI. Additional research should aim at understanding the functional consequences of the here described heterogeneous microvascular responses to establish the usefulness of identified genes as therapeutic targets in SA-AKI.


Assuntos
Coagulação Sanguínea , Inflamação , Microvasos , Sepse , Animais , Sepse/complicações , Sepse/genética , Camundongos , Humanos , Inflamação/genética , Inflamação/patologia , Microvasos/patologia , Microvasos/metabolismo , Masculino , Rim/metabolismo , Rim/patologia , Rim/irrigação sanguínea , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia
6.
Aging Cell ; 23(6): e14139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578073

RESUMO

Age-induced decline in osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) potentiates osteoporosis and increases the risk for bone fractures. Despite epidemiology studies reporting concurrent development of vascular and bone diseases in the elderly, the underlying mechanisms for the vascular-bone cross-talk in aging are largely unknown. In this study, we show that accelerated endothelial aging deteriorates bone tissue through paracrine repression of Wnt-driven-axis in BMSCs. Here, we utilize physiologically aged mice in conjunction with our transgenic endothelial progeria mouse model (Hutchinson-Gilford progeria syndrome; HGPS) that displays hallmarks of an aged bone marrow vascular niche. We find bone defects associated with diminished BMSC osteogenic differentiation that implicate the existence of angiocrine factors with long-term inhibitory effects. microRNA-transcriptomics of HGPS patient plasma combined with aged-vascular niche analyses in progeria mice reveal abundant secretion of Wnt-repressive microRNA-31-5p. Moreover, we show that inhibition of microRNA-31-5p as well as selective Wnt-activator CHIR99021 boosts the osteogenic potential of BMSCs through de-repression and activation of the Wnt-signaling, respectively. Our results demonstrate that the vascular niche significantly contributes to osteogenesis defects in aging and pave the ground for microRNA-based therapies of bone loss in elderly.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Via de Sinalização Wnt , Células-Tronco Mesenquimais/metabolismo , Animais , Camundongos , Humanos , Comunicação Parácrina , MicroRNAs/metabolismo , MicroRNAs/genética , Envelhecimento/metabolismo , Camundongos Transgênicos , Diferenciação Celular , Nicho de Células-Tronco
7.
J Cell Mol Med ; 28(8): e18149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613361

RESUMO

Patients with high-grade gliomas are at high risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) are small non-coding RNAs with multiple roles in tumour biology, haemostasis and platelet function. Their association with VTE risk in high-grade glioma has not been comprehensively mapped so far. We thus conducted a nested case-control study within 152 patients with WHO grade IV glioma that had been part of a prospective cohort study on VTE risk factors. At inclusion a single blood draw was taken, and patients were thereafter followed for a maximum of 2 years. During that time, 24 patients (16%) developed VTE. Of the other 128 patients, we randomly selected 24 age- and sex-matched controls. After quality control, the final group size was 21 patients with VTE during follow-up and 23 without VTE. Small RNA next-generation sequencing of plasma was performed. We observed that hsa-miR-451a was globally the most abundant miRNA. Notably, 51% of all miRNAs showed a correlation with platelet count. The analysis of miRNAs differentially regulated in VTE patients-with and without platelet adjustment-identified potential VTE biomarker candidates such as has-miR-221-3p. Therewith, we here provide one of the largest and deepest peripheral blood miRNA datasets of high-grade glioma patients so far, in which we identified first VTE biomarker candidates that can serve as the starting point for future research.


Assuntos
Glioma , MicroRNAs , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Estudos de Casos e Controles , Estudos Prospectivos , MicroRNAs/genética , Glioma/genética , Biomarcadores
8.
JBMR Plus ; 8(5): ziae036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606150

RESUMO

The increased risk of fractures in patients with type 1 diabetes mellitus (T1DM) is nowadays well recognized. However, the exact mechanism of action of diabetic bone disease has not been fully elucidated. MicroRNAs (miRNAs) are gene regulators that operate post-transcriptionally and have been implicated in the development of various metabolic disorders including T1DM. Previous studies have implicated a role for miR-144-5p and miR-21-5p, which are involved in controlling oxidative stress by targeting Nrf2, in T1DM. To date, it is unclear whether miR-144-5p and miR-21-5p affect bone health in T1DM. Thus, this study aimed to investigate the influence of miR-144-5p and miR-21-5p knockdown in the development of bone disease in T1DM male mice. Therefore, T1DM was induced in 10-wk-old male mice using streptozotocin (STZ). One week later, after development of hyperglycemia, antagomir-144-5p and antagomir-21-5p or their non-targeting control were administered at 10 mg/kg BW once a week until the end of the experiment. At 14 wk of age, glucose levels, bone, and fat mass were analyzed. The results revealed that treating T1DM male mice with antagomir-144-5p and antagomir-21-5p did not protect against diabetes development or bone loss, despite the successful downregulation of the miRNAs and the normalization of Nrf2 mRNA levels in bone tissue. Histological and serological parameters of bone formation or resorption were not altered by the antagomir treatment. Finally, we measured the expression of miRNA-144-5p or miRNA-21-5p in the serum of 30 individuals with T1DM and compared them to non-diabetic controls, but did not find an altered expression of either miRNA. In conclusion, the knockdown of miR-144-5p and miR-21-5p does not affect STZ-induced diabetes development or loss of bone mass in male mice. However, it does normalize expression of the anti-oxidant factor Nrf2 in diabetic bone tissue.

9.
JBMR Plus ; 8(5): ziae035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606148

RESUMO

MicroRNAs are involved in post-transcriptional regulation of gene expression. Due to their regulatory role, microRNAs are differently expressed during specific conditions in healthy and diseased individuals, so microRNAs circulating in the blood could be used as diagnostic and prognostic biomarkers for various diseases and conditions. We want to investigate the variability of circulating microRNAs and bone turnover markers in weekly time intervals in older women. In a single-site longitudinal study, a panel of 19 bone-related miRNAs was measured using the osteomiR RT-qPCR assay in serum samples of 35 postmenopausal women divided into 3 groups: healthy controls (n = 12), low BMD (n = 14), and vertebral fractures (n = 9). Blood samples for measurement of CTX, PINP, OC, and bone ALP were collected once per week for 8 weeks at 9:00 AM after overnight fasting. Serum samples from all participants were analyzed for 19 microRNA bone biomarkers and 4 bone turnover markers over 8 weeks. We analyzed the data using a mixed model analysis of variance and found no significant changes between week-by-week time points in any of the groups. To estimate intraindividual variability between weekly time points, we have calculated the median coefficient of variation (CV). This was between 28.4% and 80.2% for microRNA, with an assay CV of 21.3%. It was between 8.5% and 15.6% for bone turnover markers, with an assay CV of 3.5% to 6.5%. The intraindividual variability was similar between groups. Circulating microRNAs measured in serum had a higher weekly intraindividual variability than bone turnover markers due in part to a higher assay CV.

10.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645053

RESUMO

In the last decade cellular senescence, a hallmark of aging, has come into focus for pharmacologically targeting aging processes. Senolytics are one of these interventive strategies that have advanced into clinical trials, creating an unmet need for minimally invasive biomarkers of senescent cell load to identify patients at need for senotherapy. We created a landscape of miRNA and mRNA expression in five human cell types induced to senescence in-vitro and provide proof-of-principle evidence that miRNA expression can track senescence burden dynamically in-vivo using transgenic p21 high senescent cell clearance in HFD fed mice. Finally, we profiled miRNA expression in seven different tissues, total plasma, and plasma derived EVs of young and 25 months old mice. In a systematic analysis, we identified 22 candidate senomiRs with potential to serve as circulating biomarkers of senescence not only in rodents, but also in upcoming human clinical senolytic trials.

11.
Am J Kidney Dis ; 84(1): 38-48.e1, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38184092

RESUMO

RATIONALE & OBJECTIVE: Hyponatremia is the most common electrolyte disorder and is associated with significant morbidity and mortality. This study investigated neurocognitive impairment, brain volume, and alterations in magnetic resonance imaging (MRI)-based measures of cerebral function in patients before and after treatment for hyponatremia. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Patients with presumed chronic hyponatremia without signs of hypo- or hypervolemia treated in the emergency department of a German tertiary-care hospital. EXPOSURE: Hyponatremia (ie, plasma sodium concentration [Na+]<125mmol/L) before and after treatment leading to [Na+]>130mmol/L. OUTCOMES: Standardized neuropsychological testing (Mini-Mental State Examination, DemTect, Trail Making Test A/B, Beck Depression Inventory, Timed Up and Go) and resting-state MRI were performed before and after treatment of hyponatremia to assess total brain and white and gray matter volumes as well as neuronal activity and its synchronization. ANALYTICAL APPROACH: Changes in outcomes after treatment for hyponatremia assessed using bootstrapped confidence intervals and Cohen d statistic. Associations between parameters were assessed using correlation analyses. RESULTS: During a 3.7-year period, 26 patients were enrolled. Complete data were available for 21 patients. Mean [Na+]s were 118.4mmol/L before treatment and 135.5mmol/L after treatment. Most measures of cognition improved significantly. Comparison of MRI studies showed a decrease in brain tissue volumes, neuronal activity, and synchronization across all gray matter after normalization of [Na+]. Volume effects were particularly prominent in the hippocampus. During hyponatremia, synchronization of neuronal activity was negatively correlated with [Na+] (r=-0.836; 95% CI, -0.979 to-0.446) and cognitive function (Mini-Mental State Examination, r=-0.523; 95% CI, -0.805 to-0.069; DemTect, r=-0.744; 95% CI, -0.951 to-0.385; and Trail Making Test A, r=0.692; 95% CI, 0.255-0.922). LIMITATIONS: Small sample size, insufficient quality of several MRI scans as a result of motion artifact. CONCLUSIONS: Resolution of hyponatremia was associated with improved cognition and reductions in brain volumes and neuronal activity. Impaired cognition during hyponatremia is closely linked to increased neuronal activity rather than to tissue volumes. Furthermore, the hippocampus appears to be particularly susceptible to hyponatremia, exhibiting pronounced changes in tissue volume. PLAIN-LANGUAGE SUMMARY: Hyponatremia is a common clinical problem, and patients often present with neurologic symptoms that are at least partially reversible. This study used neuropsychological testing and magnetic resonance imaging to examine patients during and after correction of hyponatremia. Treatment led to an improvement in patients' cognition as well as a decrease in their brain volumes, spontaneous neuronal activity, and synchronized neuronal activity between remote brain regions. Volume effects were particularly prominent in the hippocampus, an area of the brain that is important for the modulation of memory. During hyponatremia, patients with the lowest sodium concentrations had the highest levels of synchronized neuronal activity and the poorest cognitive test results.


Assuntos
Encéfalo , Hiponatremia , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idoso , Doença Crônica , Testes Neuropsicológicos , Estudos de Coortes , Adulto
12.
Intensive Care Med Exp ; 11(1): 85, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032394

RESUMO

Extracellular vesicles (EVs) represent nanometer-sized, subcellular spheres, that are released from almost any cell type and carry a wide variety of biologically relevant cargo. In severe cases of coronavirus disease 2019 (COVID-19) and other states of systemic pro-inflammatory activation, EVs, and their cargo can serve as conveyors and indicators for disease severity and progression. This information may help distinguish individuals with a less severe manifestation of the disease from patients who exhibit severe acute respiratory distress syndrome (ARDS) and require intensive care measures. Here, we investigated the potential of EVs and associated miRNAs to distinguish normal ward patients from intensive care unit (ICU) patients (N = 10/group), with 10 healthy donors serving as the control group. Blood samples from which plasma and subsequently EVs were harvested by differential ultracentrifugation (UC) were obtained at several points in time throughout treatment. EV-enriched fractions were characterized by flow cytometry (FC), nanoparticle tracking analysis (NTA), and qPCR to determine the presence of selected miRNAs. Circulating EVs showed specific protein signatures associated with endothelial and platelet origin over the course of the treatment. Additionally, significantly higher overall EV quantities corresponded with increased COVID-19 severity. MiR-223-3p, miR-191-5p, and miR-126-3p exhibited higher relative expression in the ICU group. Furthermore, EVs presenting endothelial-like protein signatures and the associated miR-126-3p showed the highest area under the curve in terms of receiver operating characteristics regarding the requirement for ICU treatment. In this exploratory investigation, we report that specific circulating EVs and miRNAs appear at higher levels in COVID-19 patients, especially when critical care measures are indicated. Our data suggest that endothelial-like EVs and associated miRNAs likely represent targets for future laboratory assays and may aid in clinical decision-making in COVID-19.

13.
Cells ; 12(19)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830583

RESUMO

(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.


Assuntos
Cardiomiopatias , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Ratos , Humanos , Animais , Células Endoteliais/metabolismo , Proteína Supressora de Tumor p53 , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/complicações , Isquemia Miocárdica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno
14.
Diagn Progn Res ; 7(1): 18, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697410

RESUMO

A lack of biomarkers that detect drug-induced liver injury (DILI) accurately continues to hinder early- and late-stage drug development and remains a challenge in clinical practice. The Innovative Medicines Initiative's TransBioLine consortium comprising academic and industry partners is developing a prospective repository of deeply phenotyped cases and controls with biological samples during liver injury progression to facilitate biomarker discovery, evaluation, validation and qualification.In a nested case-control design, patients who meet one of these criteria, alanine transaminase (ALT) ≥ 5 × the upper limit of normal (ULN), alkaline phosphatase ≥ 2 × ULN or ALT ≥ 3 ULN with total bilirubin > 2 × ULN, are enrolled. After completed clinical investigations, Roussel Uclaf Causality Assessment and expert panel review are used to adjudicate episodes as DILI or alternative liver diseases (acute non-DILI controls). Two blood samples are taken: at recruitment and follow-up. Sample size is as follows: 300 cases of DILI and 130 acute non-DILI controls. Additional cross-sectional cohorts (1 visit) are as follows: Healthy volunteers (n = 120), controls with chronic alcohol-related or non-alcoholic fatty liver disease (n = 100 each) and patients with psoriasis or rheumatoid arthritis (n = 100, 50 treated with methotrexate) are enrolled. Candidate biomarkers prioritised for evaluation include osteopontin, glutamate dehydrogenase, cytokeratin-18 (full length and caspase cleaved), macrophage-colony-stimulating factor 1 receptor and high mobility group protein B1 as well as bile acids, sphingolipids and microRNAs. The TransBioLine project is enabling biomarker discovery and validation that could improve detection, diagnostic accuracy and prognostication of DILI in premarketing clinical trials and for clinical healthcare application.

15.
Sci Rep ; 13(1): 11634, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468555

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that are involved in post-transcriptional control of gene expression and might be used as biomarkers for diabetes-related complications. The aim of this case-control study was to explore potential differences in circulating miRNAs in young individuals with long-duration type 1 diabetes (T1D) compared to healthy controls, and how identified miRNAs are expressed across different tissues. Twelve adolescents, age 15.0-17.9 years, with T1D duration of more than 8 years (mean 11.1 years), were enrolled from the Swedish diabetes quality registry. An age-matched control group was recruited. Circulating miRNAs (n = 187) were analyzed by quantitative PCR. We observed that 27 miRNAs were upregulated and one was downregulated in T1D. Six of these miRNAs were tissue-enriched (blood cells, gastrointestinal, nerve, and thyroid tissues). Six miRNAs with the largest difference in plasma, five up-regulated (hsa-miR-101-3p, hsa-miR-135a-5p, hsa-miR-143-3p, hsa-miR-223-3p and hsa-miR-410-3p (novel for T1D)) and one down-regulated (hsa-miR-495-3p), with P-values below 0.01, were selected for further in-silico analyses. AKT1, VEGFA and IGF-1 were identified as common targets. In conclusion, 28 of the investigated miRNAs were differently regulated in long-duration T1D in comparison with controls. Several associations with cancer were found for the six miRNAs with the largest difference in plasma.


Assuntos
MicroRNA Circulante , Diabetes Mellitus Tipo 1 , MicroRNAs , Humanos , Adolescente , MicroRNA Circulante/genética , Diabetes Mellitus Tipo 1/genética , Estudos de Casos e Controles , MicroRNAs/genética , Regulação da Expressão Gênica
16.
Am J Physiol Renal Physiol ; 325(3): F299-F316, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410897

RESUMO

Endothelial cells in blood vessels in the kidney exert different functions depending on the (micro)vascular bed they are located in. The present study aimed to investigate microRNA and mRNA transcription patterns that underlie these differences. We zoomed in on microvascular compartments in the mouse renal cortex by laser microdissecting the microvessels prior to small RNA- and RNA-sequencing analyses. By these means, we characterized microRNA and mRNA transcription profiles of arterioles, glomeruli, peritubular capillaries, and postcapillary venules. Quantitative RT-PCR, in situ hybridization, and immunohistochemistry were used to validate sequencing results. Unique microRNA and mRNA transcription profiles were found in all microvascular compartments, with dedicated marker microRNAs and mRNAs showing enriched transcription in a single microvascular compartment. In situ hybridization validated the localization of microRNAs mmu-miR-140-3p in arterioles, mmu-miR-322-3p in glomeruli, and mmu-miR-451a in postcapillary venules. Immunohistochemical staining showed that von Willebrand factor protein was mainly expressed in arterioles and postcapillary venules, whereas GABRB1 expression was enriched in glomeruli, and IGF1 was enriched in postcapillary venules. More than 550 compartment-specific microRNA-mRNA interaction pairs were identified that carry functional implications for microvascular behavior. In conclusion, our study identified unique microRNA and mRNA transcription patterns in microvascular compartments of the mouse kidney cortex that underlie microvascular heterogeneity. These patterns provide important molecular information for future studies into differential microvascular engagement in health and disease.NEW & NOTEWORTHY Renal endothelial cells display a high level of heterogeneity depending on the (micro)vascular bed they reside in. The molecular basis contributing to these differences is poorly understood yet of high importance to increase understanding of microvascular engagement in the kidney in health and disease. This report describes m(icro)RNA expression profiles of microvascular beds in the mouse renal cortex and uncovers microvascular compartment-specific m(icro)RNAs and miRNA-mRNA pairs, thereby revealing important molecular mechanisms underlying renal microvascular heterogeneity.


Assuntos
MicroRNAs , Transcriptoma , Camundongos , Animais , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Rim/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Eur J Endocrinol ; 188(6): 526-535, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307578

RESUMO

OBJECTIVE: Achieving recommended targets of sodium correction is challenging to physicians treating hyponatraemia. Plasma sodium has to be increased effectively, yet overcorrection must be prevented. This is often hampered by a high variability of responses to treatment. Here, we sought to delineate factors influencing sodium evolution. DESIGN: We retrospectively analysed 3460 patients from the multinational Hyponatraemia Registry comprising a wide range of hyponatraemia aetiologies and treatment strategies. METHODS: Multivariable linear mixed effects models were applied to identify predictors of plasma sodium evolution within the first 24 h of treatment. RESULTS: Evolution of sodium levels over time showed a curvilinear pattern with steeper rise at earlier time points. Baseline sodium showed the most pronounced impact with an additional increment of 3.12 mEq/L for every 10 mEq/L initial sodium reduction. With sodium increments of 1.9 mEq/L and 1.4 mEq/L per 24 h, respectively, the entities hypovolaemic and thiazide-associated hyponatraemia were independent factors for sodium evolution. Therapeutic regimens using hypertonic saline (4.6 mEq/L/24 h), tolvaptan (3.4 mEq/L/24 h), or combination therapy (2.6 mEq/L/24 h) were also associated with a significantly larger sodium rise when compared with no active treatment. CONCLUSIONS: Choice and dosing of active hyponatraemia therapy should be adjusted not only according to aetiology but most importantly to pretreatment sodium. Although counterintuitive, less aggressive therapy in more profound hyponatraemia might be safer but yet effective at least in less severe cases.


Assuntos
Hiponatremia , Humanos , Hiponatremia/tratamento farmacológico , Sódio , Estudos Retrospectivos , Solução Salina Hipertônica , Sistema de Registros
18.
Biotechnol J ; 18(8): e2200513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37191240

RESUMO

Human embryonal kidney cells (HEK-293) are the most common host cells used for transient recombinant adeno-associated virus (rAAV) production in pharmaceutical industry. To better cover the expected gene therapy product demands in the future, different traditional strategies such as cell line sub-cloning and/or addition of chemical substances to the fermentation media have been used to maximize titers and improve product quality. A more effective and advanced approach to boost yield can be envisaged by characterizing the transcriptome of different HEK-293 cell line pedigrees with distinct rAAV productivity patterns to subsequently identify potential gene targets for cell engineering. In this work, the mRNA expression profile of three HEK-293 cell lines, resulting in various yields during a fermentation batch process for rAAV production, was investigated to gain basic insight into cell variability and eventually to identify genes that correlate with productivity. Mock runs using only transfection reagents were performed in parallel as a control. It finds significant differences in gene regulatory behaviors between the three cell lines at different growth and production stages. The evaluation of these transcriptomics profiles combined with collected in-process control parameters and titers shed some light on potential cell engineering targets to maximize transient production of rAAV in HEK-293 cells.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Dependovirus/genética , Células HEK293 , Terapia Genética/métodos , RNA Mensageiro
19.
J Alzheimers Dis Rep ; 7(1): 235-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090956

RESUMO

Background: Late-onset or sporadic Alzheimer's disease (sAD) is a neurodegenerative disease leading to cognitive impairment and memory loss. The underlying pathological changes take place several years prior to the appearance of the first clinical symptoms, however, the early diagnosis of sAD remains obscure. Objective: To identify changes in circulating microRNA (miR) expression in an effort to detect early biomarkers of underlying sAD pathology. Methods: A set of candidate miRs, earlier detected in biofluids from subjects at early stage of sAD, was linked to the proposed tau-driven adverse outcome pathway for memory loss. The relative expression of the selected miRs in serum of 12 cases (mild cognitive impairment, MCI) and 27 cognitively normal subjects, recruited within the ongoing Aiginition Longitudinal Biomarker Investigation Of Neurodegeneration (ALBION) study, was measured by RT-qPCR. Data on the protein levels of amyloid-ß (Aß42) and total/phosphorylated tau (t-tau/p-tau), in cerebrospinal fluid (CSF), and the cognitive z-scores of the participants were also retrieved. Results: Each doubling in relative expression of 13 miRs in serum changed the odds of either having MCI (versus control), or having pathological Aß42 or pathological Aß42 and tau (versus normal) proteins in their CSF, or was associated with the global composite z-score. Conclusion: These candidate human circulating miRs may be of great importance in early diagnosis of sAD. There is an urgent need for confirming these proposed early predictive biomarkers for sAD, contributing not only to societal but also to economic benefits.

20.
Cytotherapy ; 25(8): 821-836, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055321

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. After successful treatment of a patient with acute steroid-refractory graft-versus-host disease (GVHD) using EVs prepared from conditioned media of human bone marrow-derived MSCs, this study focused on improving the MSC-EV production for clinical application. METHODS: Independent MSC-EV preparations all produced according to a standardized procedure revealed broad immunomodulatory differences. Only a proportion of the MSC-EV products applied effectively modulated immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences in vivo, at first a mouse GVHD model was optimized. RESULTS: The functional testing of selected MSC-EV preparations demonstrated that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GVHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also failed to modulate GVHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, no concrete proteins or miRNAs were identified that could serve as surrogate markers. CONCLUSIONS: Standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency before administration to patients. Here, upon comparing immunomodulating capabilities of independent MSC-EV preparations in vivo and in vitro, we found that the mdMLR assay was qualified for such analyses.


Assuntos
Vesículas Extracelulares , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Enxerto-Hospedeiro/terapia , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...