Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 307: 114558, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091247

RESUMO

There is an urgent global need to expand crop cultivation into arid and semiarid lands to guarantee food security. Thus, limited irrigation strategies and soil amendments are promising strategies for conserving water in arid and semi-arid crop production. Soil amendments, such as compost and biochar can improve soil water relationships, nitrogen (N) fixation, soil fertility, and crop productivity. A study was designed to evaluate the effect of biochar and compost applications on soil water relationships, nutrient uptake, plant growth, and N-fixation. A greenhouse pot experiment was conducted in two soils using a complete factorial design. The main effect, i.e., water content of each soil, was maintained at either 40% or 60% water filled porosity. The sub-effect, organic amendment type, was applied as biochar or compost. The sub-sub effect was rate of application (0, 5, and 10 Mg ha-1). Plant height and root length were significantly affected by the rate of amendment applied, whereas shoot and root mass differences were explained by irrigation strategy. Whole plant N uptake was moderately affected by water content only (p = 0.0818). Phosphorus and Potassium uptake were highly affected by amendment type and rate. Biochar moderately improved plant available water (0.061 %Vol Mg-1 ha-1) over the range of 0-20 Mg ha-1 in the sandier soil. Compost did not improve plant available water in either soil. Nodulation was affected by soil type only. The benefits of biochar or compost for plant were inconsistent and depended upon irrigation strategies, soil type, application rate, and plant species.


Assuntos
Compostagem , Fabaceae , Carvão Vegetal , Solo , Água
2.
Sci Total Environ ; 741: 140446, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887013

RESUMO

Soil enzymes play a key role in the circulation of nutrients and the functioning of the ecosystem. The aim of the study was to assess how the tree species of urban agglomerations affect soil quality and enzymatic activity (dehydrogenases DEH, catalase CAT, alkaline AlP and acid AcP phosphatase, protease PR, ß-glucosidase GLU, and urease UR). To this end, soil samples were taken from beneath nine park trees. The risk of soil contamination by selected heavy metals (Pb, Ni, Cd) was also investigated against the background of the selected physicochemical properties. Enzyme activity results were used to calculate multi-parametric indices of soil quality: availability factor (AF), enzymatic pH indicator (AlP/AcP), biological index of fertility (BIF), geometric mean (GMea), alternation index (Al3), biochemical soil activity (BA16 and BA17). The results showed statistically significant differences in physicochemical and enzymatic properties of soil depending on tree species. Correlation analysis showed that the content of total organic carbon (TOC), total nirogen (TN), total phosphorus (TP) and humus (OM) in soil significantly influenced the activity of the studied enzymes and glomalin content. AF coefficient values (1.84%-18.19%) suggest that the bioavailability of available phosphorus (AP) was sufficient. The Pb, Ni, Cd content results were found to be low and did not exceed the permissible concentrations. DEH, CAT and AlP activity were highest under common hawthorn, and AcP, GLU and PR under northern white cedar. The calculated enzymatic indicators proved to be a sensitive and accurate indicator of the dynamics of changes taking place in the city park soil. Based on the results, an attempt can be made to assess the planning of sustainable development of studied areas of urban parks.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Cidades , Ecossistema , Parques Recreativos , Solo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...