Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(42): 15015-15026, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34609403

RESUMO

The novel tetranuclear Pt(IV)-Re(VII) complex [Pt2Me4(OReO3)2(PMePh2)2(µ-bpy-2H)], 4, is synthesized through the reaction of silver perrhenate with a new rollover cycloplatinated(IV) complex [Pt2Me4I2(PMePh2)2(µ-bpy-2H)], 3. In complex 4, while 2,2'-bipyridine (bpy) acts as a linker between two Pt metal centers, oxygen acts as a mono-bridging atom between Pt and Re centers through an unsupported Pt(IV)-O-Re(VII) bridge. The precursor rollover cycloplatinated(IV) complex 3 is prepared by the MeI oxidative addition reaction of the rollover cycloplatinated(II) complex [Pt2Me2(PMePh2)2(µ-bpy-2H)], 2. Complex 2 shows a metal-to-ligand charge-transfer band in the visible region, which was used to investigate the kinetics and mechanism of its double MeI oxidative addition reaction. Based on the experimental findings, the classical SN2 mechanism was suggested for both steps and supported by computational studies. All complexes are fully characterized using multinuclear NMR spectroscopy and elemental analysis. Attempts to grow crystals of the rollover cycloplatinated(IV) dimer 3 yielded a new dimer rollover cyclometalated complex [Pt2I2(PMePh2)2(µ-bpy-2H)], 5, presumably from the C-C reductive elimination of ethane. The identity of complex 5 was confirmed by single crystal X-ray diffraction analysis.

2.
Langmuir ; 37(16): 4802-4809, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33851534

RESUMO

Nanostructured systems constitute versatile carriers with multiple functions engineered in a nanometric space. Yet, such multimodality often requires adapting the chemistry of the nanostructure to the properties of the hosted functional molecules. Here, we show the preparation of core-shell Pluronic-organosilica "PluOS" nanoparticles with the use of a library of organosilane precursors. The precursors are obtained via a fast and quantitative click reaction, starting from cost-effective reagents such as diamines and an isocyanate silane derivative, and they condensate in building blocks characterized by a balance between hydrophobic and H-bond-rich domains. As nanoscopic probes for local polarity, oxygen permeability, and solvating properties, we use, respectively, solvatochromic, phosphorescent, and excimer-forming dyes covalently linked to the organosilica matrix during synthesis. The results obtained here clearly show that the use of these organosilane precursors allows for finely tuning polarity, oxygen permeability, and solvating properties of the resulting organosilica core, expanding the toolbox for precise engineering of the particle properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...