Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356096

RESUMO

Nowadays, it is well recognized that apoptosis, as a highly regulated cellular process, plays a crucial role in various biological processes, such as cell differentiation. Dysregulation of apoptosis is strongly implicated in the pathophysiology of numerous disorders, making it essential to comprehend its underlying mechanisms. One key factor that has garnered significant attention in the regulation of apoptotic pathways is HMG-CoA reductase degradation protein 1, also known as HRD1. HRD1 is an E3 ubiquitin ligase located in the endoplasmic reticulum (ER) membrane. Its primary role involves maintaining the quality control of ER proteins by facilitating the ER-associated degradation (ERAD) pathway. During ER stress, HRD1 aids in the elimination of misfolded proteins that accumulate within the ER. Therefore, HRD1 plays a pivotal role in the regulation of apoptotic pathways and maintenance of ER protein quality control. By targeting specific protein substrates and affecting apoptosis-related pathways, HRD1 could be an exclusive therapeutic target in different disorders. Dysregulation of HRD1-mediated processes contributes significantly to the pathophysiology of various diseases. The purpose of this review is to assess the effect of HRD1 on the pathways related to apoptosis in various diseases from a therapeutic perspective.

2.
Cell Death Dis ; 15(1): 17, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191571

RESUMO

Cancer is one of the most common diseases and causes of death worldwide. Since common treatment approaches do not yield acceptable results in many patients, developing innovative strategies for effective treatment is necessary. Immunotherapy is one of the promising approaches that has been highly regarded for preventing tumor recurrence and new metastases. Meanwhile, inhibiting immune checkpoints is one of the most attractive methods of cancer immunotherapy. Cytotoxic T lymphocyte-associated protein-4 (CTLA-4) is an essential immune molecule that plays a vital role in cell cycle modulation, regulation of T cell proliferation, and cytokine production. This molecule is classically expressed by stimulated T cells. Inhibition of overexpression of immune checkpoints such as CTLA-4 receptors has been confirmed as an effective strategy. In cancer immunotherapy, immune checkpoint-blocking drugs can be enhanced with nanobodies that target immune checkpoint molecules. Nanobodies are derived from the variable domain of heavy antibody chains. These small protein fragments have evolved entirely without a light chain and can be used as a powerful tool in imaging and treating diseases with their unique structure. They have a low molecular weight, which makes them smaller than conventional antibodies while still being able to bind to specific antigens. In addition to low molecular weight, specific binding to targets, resistance to temperature, pH, and enzymes, high ability to penetrate tumor tissues, and low toxicity make nanobodies an ideal approach to overcome the disadvantages of monoclonal antibody-based immunotherapy. In this article, while reviewing the cellular and molecular functions of CTLA-4, the structure and mechanisms of nanobodies' activity, and their delivery methods, we will explain the advantages and challenges of using nanobodies, emphasizing immunotherapy treatments based on anti-CTLA-4 nanobodies.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Antígeno CTLA-4 , Anticorpos de Domínio Único/uso terapêutico , Imunoterapia , Proteínas de Checkpoint Imunológico , Anticorpos Monoclonais , Neoplasias/terapia
3.
World J Microbiol Biotechnol ; 34(12): 174, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446832

RESUMO

Cementation of salt-containing soils can be achieved by salt-tolerant or halophilic calcite precipitation bacteria. Therefore, the isolation of calcite-producing bacteria in the presence of salt is the first step in the microbial cementation of saline soils. Urease producing bacteria can cause calcite nano-crystals to precipitate by producing urease in the presence of urea and calcium. The purpose of this study was to isolate urease producing halophilic bacteria in order to make calcite precipitate in saline soil. The calcite and the properties of the strains were further analyzed by X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray detector. In this study, a total of 110 halophilic strains were isolated, from which 58 isolates proved to have the ability of urease production. Four strains were identified to produce nano-calcite using urease activity in the precipitation medium. The XRD studies showed that the size of these particles was in the range of 40-60 nm. Strain H3 revealed that calcite is mostly produced in the precipitation medium containing 5% salt in comparison with other strains. This strain also produced calcite precipitates in the precipitation medium containing 15% salt. Phylogenetic analysis indicated that these isolates are about 99-100% similar to Staphylococcus saprophyticus.


Assuntos
Carbonato de Cálcio/metabolismo , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/metabolismo , Staphylococcus saprophyticus/enzimologia , Urease/metabolismo , Difração de Raios X/métodos , Carbonato de Cálcio/química , Carbonato de Cálcio/isolamento & purificação , Microbiologia Ambiental , Irã (Geográfico) , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Filogenia , RNA Ribossômico 16S/genética , Staphylococcus saprophyticus/classificação , Staphylococcus saprophyticus/isolamento & purificação , Staphylococcus saprophyticus/metabolismo , Ureia/metabolismo , Urease/isolamento & purificação
4.
Cell J ; 14(4): 246-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577303

RESUMO

OBJECTIVE: It has been suggested that the vascular endothelial growth factor (VEGF) gene expression plays an important role in radiation-induced injury to the spinal cord. This study assesses the radioprotective effects of N-acetyl-5-methoxytryptamine (melatonin) through its modulation of VEGF expression after localized irradiation of the cervical spinal cord. MATERIALS AND METHODS: In this experimental study, we divided 192 male rats into four groups: 1. control (n=48); 2. rats that received an intraperitoneal (IP) injection of melatonin (n=48); 3. rats that received an IP injection of melatonin 30 minutes prior to cervical spinal cord gamma irradiation [dose: 22 Gy; (n=48)]; and 4. rats that received an IP injection of vehicle prior to spinal cord irradiation (n=48). The changes in VEGF expression were assessed using real-time RT-PCR and enzyme-linked immunosorbent assays. Samples for light microscopy were stained with hematoxylin and eosin (H&E). The differences among the groups were analyzed using the analysis of variance (ANOVA) test followed by Tukey's multiple comparisons test. RESULTS: Up-regulation of VEGF expression was observed from 8 to 22 weeks after irradiation (p<0.05). Paralysis and other radiation-induced myelopathy manifestations developed within 22 weeks after irradiation. VEGF expression in the melatonin pre-treatment group significantly down-regulated in the 20(th) and 22(nd) weeks after irradiation compared to the radiation-only group. CONCLUSION: The results support the hypothesis that modulation of VEGF expression by melatonin administration may increase the survival rate of irradiated animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...