Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990494

RESUMO

Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.

2.
PLoS One ; 19(5): e0300187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722866

RESUMO

Leaf-cutting ants are the most important pests in several cropping systems in the Neotropics. Granulated baits containing active ingredients, considered hazardous by the Stockholm Convention, are the usual method to control these ants. Isocycloseram is a new insecticide molecule with high safety margin for mammals, but without registration for the ants in general. Thus, this study investigated the effectiveness of granulated baits with isocycloseram in leaf-cutting ants control under laboratory and field conditions. Initially, the mortality of Atta sexdens workers, fed with dehydrated citrus pulp paste containing different concentrations of isocycloseram was evaluated in the laboratory for 21 days, for toxicological classification. Subsequently, the loading, devolution, and incorporation of baits with different concentrations of isocycloseram and the mortality of A. sexdens colonies were evaluated in the laboratory. After that, the percentages of loading and devolution of baits, foraging activity, and colony mortality treated with 0.05, 0.1, 0.2, and 0.3% of isocycloseram were evaluated for the species A. sexdens, A. laevigata, and Acromyrmex lundii in field conditions. All concentrations of isocycloseram killed more than 15% of ants in 24 h and more than 90% in 21 days in the laboratory, being classified as a fast-acting and highly effective active ingredient. Baits with 0.001 to 0.03% of isocycloseram were highly loaded and exhibited low rate of devolution. The mortality of A. sexdens colony was higher at concentrations between 0.075 and 0.3%, in the laboratory. Baits containing isocycloseram at concentrations of 0.2 and 0.3% were highly loaded, presented low devolution rates, and were highly efficient in controlling A. sexdens, A. laevigata, and A. lundii in the field, at dosages of 6, 10, and 12 g/m² of nest. This is the first report of the use of isocycloseram against leaf-cutting ants, contributing to the development of efficient and toxicologically safer ant baits.


Assuntos
Formigas , Inseticidas , Animais , Formigas/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Insetos/métodos
3.
Folia Microbiol (Praha) ; 69(1): 91-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017300

RESUMO

Bacillus thuringiensis (Bt) is known for its Cry and Vip3A pesticidal proteins with high selectivity to target pests. Here, we assessed the potential of a novel neotropical Bt strain (UFT038) against six lepidopteran pests, including two Cry-resistant populations of fall armyworm, Spodoptera frugiperda. We also sequenced and analyzed the genome of Bt UFT038 to identify genes involved in insecticidal activities or encoding other virulence factors. In toxicological bioassays, Bt UFT038 killed and inhibited the neonate growth in a concentration-dependent manner. Bt UFT038 and HD-1 were equally toxic against S. cosmioides, S. frugiperda (S_Bt and R_Cry1 + 2Ab populations), Helicoverpa zea, and H. armigera. However, larval growth inhibition results indicated that Bt UFT038 was more toxic than HD-1 to S. cosmioides, while HD-1 was more active against Chrysodeixis includens. The draft genome of Bt UFT038 showed the cry1Aa8, cry1Ac11, cry1Ia44, cry2Aa9, cry2Ab35, and vip3Af5 genes. Besides this, genes encoding the virulence factors (inhA, plcA, piplC, sph, and chi1-2) and toxins (alo, cytK, hlyIII, hblA-D, and nheA-C) were also identified. Collectively, our findings reveal the potential of the Bt UFT038 strain as a source of insecticidal genes against lepidopteran pests, including S. cosmioides and S. frugiperda.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Humanos , Recém-Nascido , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Glycine max , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Inseticidas/metabolismo , Spodoptera/metabolismo , Larva , Fatores de Virulência/metabolismo , Controle Biológico de Vetores
4.
PLoS One ; 18(3): e0281806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996013

RESUMO

In drosophilids, competition and coexistence can impact survivorship, growth, and reproductive output. Here, we evaluated direct competition between two co-occurring fruit flies, the spotted-wing drosophila Drosophila suzukii and the African fig fly Zaprionus indianus, comparing results from field collections with laboratory experiments. Field collections were conducted to evaluate co-occurrence between species. In the laboratory, different densities of eggs of each species were provided an artificial diet, and intra- and interspecific densities were evaluated regarding biological traits such as development and fecundity. Field collections showed a prevalence of Z. indianus, followed by other drosophilid species, including D. suzukii. Pupal survival and adult emergence were higher in D. suzukii than in Z. indianus at both intra- and interspecific densities, with decreasing values in response to increased densities. Fecundity did not differ significantly for either species at different intraspecific densities, but when reared together at different densities, Z. indianus was significantly more fecund than D. suzukii. Development time showed no significant difference at intraspecific densities, but when reared together, Z. indianus had longer development times than D. suzukii. Leslie Matrix projections indicated that D. suzukii showed practically the same dynamics at intraspecific and interspecific densities, with increasing oscillations at low and intermediate densities and decreasing oscillations at high densities. Zaprionus indianus showed a similar oscillation to D. suzukii, except at intermediate intraspecific densities, when the pattern was cyclic. Low interspecific densities resulted in decreasing oscillations. In the two-choice oviposition bioassays, D. suzukii females showed no significant preference for diets previously infested or not with either conspecific or heterospecific eggs at different densities. Understanding competitive interactions between co-occurring heterospecific species should be considered when establishing management tactics for spotted-wing drosophila.


Assuntos
Drosophila , Oviposição , Animais , Feminino , Fertilidade , Pupa
5.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501335

RESUMO

The use of formulations containing botanical products for controlling insects that vector human and animal diseases has increased in recent years. Plant extracts seem to offer fewer risks to the environment and to human health without reducing the application strategy's efficacy when compared to synthetic and conventional insecticides and repellents. Here, we evaluated the potential of extracts obtained from caninana, Chiococca alba (L.) Hitchc. (Rubiaceae), plants as a tool to be integrated into the management of Aedes aegypti, one of the principal vectors for the transmission of arborviruses in humans. We assessed the larvicidal and repellence performance against adult mosquitoes and evaluated the potential undesired effects of the extracts on non-target organisms. We assessed the susceptibility and predatory abilities of the nymphs of Belostoma anurum, a naturally occurring mosquito larva predator, and evaluated the C. alba extract's cytotoxic effects in mammalian cell lines. Our chromatographic analysis revealed 18 compounds, including rutin, naringin, myricetin, morin, and quercetin. The methanolic extracts of C. alba showed larvicidal (LC50 = 82 (72-94) mg/mL) activity without killing or affecting the abilities of B. anurum to prey upon mosquito larvae. Our in silico predictions revealed the molecular interactions between rutin and the AeagOBP1 receptor to be one possible mechanism for the repellent potential recorded for formulations containing C. alba extracts. Low cytotoxicity against mammalian cell lines reinforces the selectivity of C. alba extracts. Collectively, our findings highlight the potential of C. alba and one of its constituents (rutin) as alternative tools to be integrated into the management of A. aegypti mosquitoes.

6.
Insects ; 13(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35206754

RESUMO

Interactive movements of bees facilitate the division and organization of collective tasks, notably when they need to face internal or external environmental challenges. Here, we present a Bayesian and computational approach to track the movement of several honey bee, Apis mellifera, workers at colony level. We applied algorithms that combined tracking and Kernel Density Estimation (KDE), allowing measurements of entropy and Probability Distribution Function (PDF) of the motion of tracked organisms. We placed approximately 200 recently emerged and labeled bees inside an experimental colony, which consists of a mated queen, approximately 1000 bees, and a naturally occurring beehive background. Before release, labeled bees were fed for one hour with uncontaminated diets or diets containing a commercial mixture of synthetic fungicides (thiophanate-methyl and chlorothalonil). The colonies were filmed (12 min) at the 1st hour, 5th and 10th days after the bees' release. Our results revealed that the algorithm tracked the labeled bees with great accuracy. Pesticide-contaminated colonies showed anticipated collective activities in peripheral hive areas, far from the brood area, and exhibited reduced swarm entropy and energy values when compared to uncontaminated colonies. Collectively, our approach opens novel possibilities to quantify and predict potential alterations mediated by pollutants (e.g., pesticides) at the bee colony-level.

7.
Environ Pollut ; 284: 117130, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33910136

RESUMO

Despite being effective in controlling mosquito larvae and a few other target organisms, the application of insecticides into aquatic systems may cause unintended alterations to the physiology or behavioral responses of several aquatic non-target organisms, which can ultimately lead to their death. Here, we firstly evaluated whether the susceptibility of the giant water bug, Belostoma anurum (Hemiptera: Belostomatidae), a predator of mosquito larvae, to pyriproxyfen would be similar to that of its potential prey, larvae of Aedes aegypti (Diptera: Culicidae). Secondly, we recorded the nominal concentrations of pyriproxyfen in water and evaluated whether sublethal exposures would lead to physiological or behavioral alterations on the B. anurum nymphs. We characterized the activities of three major families of detoxification enzymes (i.e., cytochrome P450 monooxygenases, glutathione-S-transferase, and general esterases) and further evaluated the abilities of pyriproxyfen sublethally-exposed B. anurum to prey upon A. aegypti larvae at different prey densities. Our findings revealed that nominal pyriproxyfen concentration significantly decreased (approximately 50%) over the first 24 h. Furthermore, when applied at the concentration of 10 µg a.i./L, pyriproxyfen was approximately four times more toxic to A. aegypti larvae (LT50 = 48 h) than to B. anurum nymphs (LT50 = 192 h). Interestingly, the pyriproxyfen sublethally-exposed (2.5 µg a.i./L) B. anurum nymphs exhibited reduced enzyme activities (cytochrome P450 monooxygenases) involved in detoxication processes and preyed significantly less on A. aegypti larvae when compared to unexposed predators. Collectively, our findings demonstrate that mortality-based pyriproxyfen risk assessments are not always protective of aquatic non-target organisms.


Assuntos
Aedes , Heterópteros , Inseticidas , Animais , Inseticidas/toxicidade , Larva , Controle de Mosquitos , Piridinas/toxicidade
8.
Sci Total Environ ; 779: 146432, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744575

RESUMO

Stingless bees such as Partamona helleri Friese play important roles in pollination of native plants and agricultural crops in the Neotropics. Global concerns about declining bee populations due to agrochemical pollutants have, however, been biased towards the honey bee, Apis mellifera Linnaeus. Here, we analysed the unintended effects of commercial formulations of a neonicotinoid insecticide, imidacloprid, and a fungicide mixture of thiophanate-methyl and chlorothalonil on color preference, respiration rates and group locomotory activities of both P. helleri and A. mellifera. Our results revealed that P. helleri foragers that were not exposed to pesticides changed their color preference during the course of a year. By contrast, we found that pesticide exposure altered the color preference of stingless bees in a concentration-dependent manner. In addition, imidacloprid decreased the overall locomotion of both bee species, whereas the fungicide mixture increased locomotion of only stingless bees. The fungicide mixture also reduced respiration rates of forager bees of both species. Forager bees of both species altered their color preference, but not their locomotory and respiration rates, when exposed to commercial formulations of each fungicidal mixture component (i.e., chlorothalonil and thiophanate-methyl). Our findings emphasize the importance of P. helleri as a model for Neotropical wild pollinator species in pesticide risk assessments, and also the critical importance of including groups of agrochemicals that are often considered to have minimal impact on pollinators, such as fungicides.


Assuntos
Agroquímicos , Inseticidas , Agroquímicos/toxicidade , Animais , Abelhas , Inseticidas/toxicidade , Locomoção , Polinização , Taxa Respiratória
9.
Ecotoxicology ; 30(2): 361-372, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33566273

RESUMO

Nanotechnology is a new field in the pesticide industry. Nanopesticides represent an emerging technological tool that offers a range of benefits including increased efficacy, durability, and reduction in the amounts of used active ingredients. However, due to the lack of studies on the toxicity and the sublethal effects on pests and natural enemies, the extent of action and fate of these nanopesticdes is still not fully understood limitting thus their wide use. In this study, we encapsulated the pirimicarb insecticide using nanostructured lipid carriers (NLC) and investigated the toxicity and sublethal effects (LC25) of the resulting nanocapsules against the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) and its natural enemy the green lacewings Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Nanoencapsulation of pirimicarb enhanced 12.6-fold its toxicity to cabbage aphids compared to its commercial formulation. Furthermore, analysis of the age-stage, two-sex life table showed that negative effects on the B. brassicae aphid population growth were observed on F0 and F1 generations when aphids of parental (F0) generation were exposed to subelethal dose (LC25) of both formulations of pirimicarb. However, negative effects from sublethal exposure to the commercial and nanoformulated pirimicarb resulted in significant reduction on the net reproductive rate, intrinsic rate of natural increase, and finite rate of increase of the green lacewings C. carnea. Our findings indicate that the approaches and assumptions used to assess the risks of conventional insecticides may not apply for nanopesticides. Further research is still needed to better understand the environmental impact of these compounds.


Assuntos
Afídeos , Inseticidas , Animais , Carbamatos , Insetos , Inseticidas/toxicidade , Pirimidinas
10.
Pest Manag Sci ; 77(1): 417-424, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32761689

RESUMO

BACKGROUND: The use of insecticidal solutions containing sodium chloride (NaCl) has been proposed as a more environmentally friendly alternative to managing stink bug infestations of Neotropical soybean fields. The potential sublethal and undesirable effects of this practice have, however, been overlooked, especially with novel insecticides. Here, we have evaluated experimentally whether the addition of NaCl (0.5% w/v) to imidacloprid-containing solutions could alter insecticide toxicity and modify the reproductive responses of the Neotropical brown stink bug Euschistus heros. RESULTS: Adding NaCl to imidacloprid solutions significantly increased imidacloprid toxicity against E. heros. The exposure to E. heros to sublethal concentrations of imidacloprid affected the insect's mating abilities in a concentration-dependent manner. The addition of NaCl to solutions containing imidacloprid at concentrations as low as 0.126 µg a.i. cm-2 (i.e. the equivalent to 3% of field rate recommendation) also impacted the sexual behavior of E. heros, reducing mating duration. NaCl-exposed stink bugs, however, exhibited higher fecundity and fertility rates than those insects that were unexposed to NaCl or those that were exposed to sublethal levels of imidacloprid only. CONCLUSIONS: The addition of low amounts of NaCl resulted in a higher toxicity of imidacloprid. This practice, however, can also lead to undesirable effects as increasing reproductive output of E. heros that can potentially compromise the management of these insect pests.


Assuntos
Heterópteros , Inseticidas , Animais , Neonicotinoides/toxicidade , Nitrocompostos , Cloreto de Sódio
11.
Sci Total Environ ; 729: 138922, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32498167

RESUMO

Ecotoxicological risk assessments of pesticides on non-target arthropods are often carried out under constant and optimal temperature regimes. However, living organisms rarely experience these conditions in real field situations. Understanding the impact of pesticides on non-target beneficial arthropods under temperature stresses is especially important in terms of global warming. We assessed the lethal and sublethal effects of four modern insecticides (chlorantraniliprole, cyantraniliprole, spinetoram, spinosad), on the generalist predator Macrolophus pygmaeus (Hemiptera: Miridae) under a range of temperatures (from 10 to 40°C) frequently experienced in a real field scenario. A reduction coefficient (Ex) was calculated by summarizing the mortality and predator reproductive capacity and, the chemicals were classified according to the International Organization for Biological Control (IOBC) toxicity classes. The insecticides showed a marked synergistic effect with temperature, as the predator mortality and reproductive outputs were significantly correlated with increasing temperatures. Spinosyns interacted significantly with temperature causing the highest mortality and lowest fertility rates. Anthranilic diamides showed a safer ecotoxicological profile compared to spinosyns, with cyantraniliprole being more harmful than chlorantraniliprole. These results suggest that temperature should be taken into account in pesticide ecotoxicology studies within the framework of integrated pest management and the recent climate changes.


Assuntos
Heterópteros , Animais , Inseticidas , Controle de Pragas , Praguicidas
12.
Environ Pollut ; 264: 114605, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32380390

RESUMO

The adaptive fitness of insect species can be shaped by how males and females respond, both physiologically and behaviorally, to environmental challenges, such as pesticide exposure. In parasitoid wasps, most toxicological investigations focus only on female responses (e.g., survival and especially parasitism abilities), leaving the male contributions to adaptive fitness (survival, locomotion, mate search) poorly investigated. Here, we evaluated the toxicity of the spinosyn insecticide spinosad against the South American fruit fly, Anastrepha fraterculus, and we used the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) to evaluate whether sex-linked locomotory and physiological responses would influence the susceptibility of these organisms to spinosad. Our results revealed that D. longicaudata males were significantly more susceptible (median lethal time (LT50) = 24 h) to spinosad than D. longicaudata females (LT50 = 120 h), which may reflect the differences in their locomotory and physiological (e.g., respiratory) responses to mitigate insecticide exposure. Compared to D. longicaudata females, male wasps were lighter (P < 0.001), walked for longer distances (P < 0.001) and periods (P < 0.001), and exhibited higher sensilla densities in their tarsi (P = 0.008), which may facilitate their intoxication with the insecticide. These findings indicate that male parasitoids should not be exempt from insecticide selectivity tests, as these organisms can be significantly more affected by such environmental challenges than their female conspecifics.


Assuntos
Inseticidas , Tephritidae , Vespas , Animais , Feminino , Locomoção , Masculino , Controle Biológico de Vetores
13.
Pest Manag Sci ; 76(7): 2286-2293, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32237033

RESUMO

Biorational insecticides are composed of natural products, including animals, plants, microbes, and minerals, or are their derivates. The use of biorational products for the management of insect pests has grown intensively in recent years, which has increased their popularity and share on the insecticide global market. Much of these recent increases in the use of biorational insecticides has been derived from the generalized perception that conventional insecticides have undesirable ecological and human health impacts. However, the idea of simply replacing synthetic compounds with biorational insecticides without considering their potential unintended effects can mislead their use and reduce the market life of such pest management tools. A systematic literature survey encompassing over 15 000 scientific manuscripts published between 1945 and 2019 reinforces the bias of focusing on studying the targeted effects while overlooking the potential detrimental effects of biorational products on human health and the environment (e.g. death and negative sublethal effects on pollinators and beneficial arthropods such as parasitoids and predators). Thus, the risks associated with biorational compounds (e.g. control failures, the evolution of resistance, shift in dominance, and outbreaks of secondary or primary pests) need to be revisited and the outcomes of such inquiry could be decisive for their future use in pest management programs. The shortcomings of regulatory processes, knowledge gaps, and the outlook for the use of the biorational products in pest management are discussed. © 2020 Society of Chemical Industry.


Assuntos
Inseticidas/farmacologia , Animais , Artrópodes , Humanos , Insetos , Controle de Pragas
14.
Sci Total Environ ; 718: 137328, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325622

RESUMO

The plant-based biopesticides have been proposed as insect pest control tools that seem to be safer for the environment and human health when compared to synthetic conventional molecules. However, such assumptions are generally made without considering the absence of detrimental effects on sublethally-exposed non-target organisms or showing the physiological basis of the selective action of such botanical products. Thus, by using in silico-based and in vivo toxicological approaches, the present investigation aimed to disentangle the ecotoxicological selectivity of clove, Syzygium aromaticum, essential oil against the aphid Rhopalosiphum maidis and the non-target ladybeetle, Coleomegilla maculata. We also investigated whether the sublethal exposure to clove essential oil would affect the locomotory and predatory abilities of C. maculata. We found that the clove essential oil concentration estimated to kill 95% (LC95: 0.17 µL/cm2) of the aphids was lethal to <18% of C. maculata. Indeed, our in silico results reinforced such differential susceptibility, as it predicted that eugenol and ß-caryophyllene (i.e., the clove essential oil major components) bound to three potential molecular targets (i.e., transient receptor potential (TRP) channels, octopamine, and gamma-aminobutyric acid (GABA) receptors) of the aphids but only to the octopamine receptors of the ladybeetles. Additionally, the ladybeetles that were exposure to the clove essential oil exhibited unaffected abilities to locomote and to prey upon R. maidis aphids when compared to unexposed ladybeetles. Thus, by displaying lower toxicity against the ladybeetles, the clove essential oil represents a safer alternative tool to be integrated into programs aiming to manage aphid infestations.


Assuntos
Afídeos , Animais , Óleo de Cravo , Controle de Insetos , Óleos Voláteis , Syzygium
15.
Sci Rep ; 10(1): 5518, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218451

RESUMO

Bacillus thuringiensis serovar israelensis (Bti) is used to control insect vectors of human and animal diseases. In the present study, the toxicity of four strains of Bti, named T0124, T0131, T0137, and T0139, toward Aedes aegypti and Culex quinquefasciatus larvae was analyzed. The T0131 strain showed the highest larvicidal activity against A. aegypti (LC50 = 0.015 µg/ml) and C. quinquefasciatus larvae (LC50 = 0.035 µg/ml) when compared to the other strains. Furthermore, the genomic sequences of the four strains were obtained and compared. These Bti strains had chromosomes sizes of approximately 5.4 Mb with GC contents of ~35% and 5472-5477 putative coding regions. Three small plasmids (5.4, 6.8, and 7.6 kb) and three large plasmids (127, 235, and 359 kb) were found in the extrachromosomal content of all four strains. The SNP-based phylogeny revealed close relationship among isolates from this study and other Bti isolates, and SNPs analysis of the plasmids 127 kb did not reveal any mutations in δ-endotoxins genes. This newly acquired sequence data for these Bti strains may be useful in the search for novel insecticidal toxins to improve existing ones or develop new strategies for the biological control of important insect vectors of human and animal diseases.


Assuntos
Aedes/parasitologia , Bacillus thuringiensis/classificação , Cromossomos Bacterianos/genética , Culex/parasitologia , Genômica/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/imunologia , Toxinas de Bacillus thuringiensis/genética , Composição de Bases , Endotoxinas/genética , Tamanho do Genoma , Proteínas Hemolisinas/genética , Larva/parasitologia , Mosquitos Vetores/parasitologia , Filogenia , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Sorogrupo
16.
Pest Manag Sci ; 76(3): 996-1003, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31489755

RESUMO

BACKGROUND: The application of lime sulfur is a common practice used to control arthropod pests in organic production of fruits. However, the unintended effects of this insecticide preparation on non-targeted organisms have not received the adequate attention. Here, we evaluated the lime sulfur toxicity on the phytophagous mites Tetranychus urticae Koch (Acari: Tetranychidae) and on two predatory mite species [i.e., Neoseiulus californicus (McGregor) and Phytoseiulus macropilis (Banks)] (Acari: Phytoseiidae) of natural occurrence in strawberry plants. We also assessed the repellency and potential effects on the oviposition rates and the egg viability of mites that were exposed to field-used lime sulfur concentrations (i.e., 2%). RESULTS: The lime sulfur exhibited higher toxicity to the predators N. californicus (LC50 = 5.4 [4.5%-6.8%]) and P. macropilis (LC50 = 5.0 [4.0%-6.5%]) than to the phytophagous T. urticae (LC50 = 12.4 [9.0%-17.1%]). However, the exposure to field-applied concentrations resulted in higher reductions on the oviposition rate of T. urticae (36%) than on the predatory mites (N. californicus = 18%. P. macropilis = 19%). Interestingly, although the egg viability of P. macropilis was less affected (i.e., reduction of 50%) by such lime sulfur exposures, these mites were unable to avoid lime sulfur-treated areas. Egg viability of N. californicus was only 18.6%. CONCLUSION: Lime sulfur at field-applied concentrations harmed T. urticae fecundity and fertility and it showed selectivity against naturally occurring predatory mites, which reinforces its potential as a tool for integrated mite pest management. © 2019 Society of Chemical Industry.


Assuntos
Fragaria , Tetranychidae , Animais , Compostos de Cálcio , Feminino , Controle Biológico de Vetores , Comportamento Predatório , Sulfetos
17.
PLoS Negl Trop Dis ; 13(8): e0007624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398198

RESUMO

BACKGROUND: The use of synthetic insecticides is one of the most common strategies for controlling disease vectors such as mosquitos. However, their overuse can result in serious risks to human health, to the environment, as well as to the selection of insecticidal resistant insect strains. The development of efficient and eco-friendly insect control is urgent, and essential oils have been presented as potential alternatives to synthetic insecticides. Moreover, nanoencapsulation techniques can enhance their efficiency by protecting from degradation and providing a controlled release rate. RESULTS: We assessed the potential of chitosan nanoparticles in encapsulating Siparuna guianensis essential oil, and maintaining its efficiency and prolonging its activity for the control of Aedes aegypti larvae. The encapsulation was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), with an encapsulation efficiency ranging from 84.8% to 88.0%. Toxicity studies have demonstrated efficacy against mosquito larvae over 50% for 19 days with 100% mortality during the first week. This persistent action is presumably due to the enhanced contact and slow and maintained release conferred by chitosan nanoparticles. Furthermore, the exposure of aquatic non-target organisms (e.g. embryos and small adult fishes) revealed adequate selectivity of these nanoparticles. CONCLUSIONS: The encapsulation of S. guianensis essential oil in chitosan nanoparticles showed promising potential as a larvicide control alternative and should be considered within strategies for fighting Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Quitosana/química , Larva/efeitos dos fármacos , Laurales/química , Nanopartículas/química , Óleos Voláteis/farmacologia , Aedes/crescimento & desenvolvimento , Animais , Brasil , Controle de Insetos/métodos , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Mosquitos Vetores/efeitos dos fármacos , Extratos Vegetais/farmacologia
18.
J Econ Entomol ; 112(6): 3002-3006, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289814

RESUMO

Biological invasions are a global threat to agricultural crops worldwide. In the Neotropical region, the spotted-wing Drosophila [Drosophila suzukii (Matsumura)] has rapidly expanded its geographical range spreading throughout South America in recent years. Besides climatic factors, the remarkable success of its establishment and subsequent distribution in this region is closely dependent on the diversity and availability of host plants. We evaluated the host potential (e.g., as food and oviposition sources) of fruits of jabuticaba [Plinia cauliflora (Mart.) Kausel (Myrtales: Myrtaceae)], Barbados cherry (Malpighia emarginata DC) (Malpighiales: Malpighiaceae), bonnet pepper (Capsicum chinense Jacq.) (Solanales : Solanaceae), and coffee (Coffea arabica L.) (Gentianales : Rubiaceae) and their effects on the biological and physiological traits of D. suzukii. For the fruit types where fly emergence occurred, we assessed the biological and physiological performance of the flies and compared these parameters with those recorded for flies reared on strawberries (Fragaria × ananassa Duchesne) (Rosales : Rosaceae) and an artificial diet. Our results revealed that oviposition into fruits and completion of the life cycle occurred on Barbados cherries only. Furthermore, field surveys revealed a higher emergence rate of D. suzukii on undamaged ripe Barbados cherries than damaged ones. Moreover, flies developing on Barbados cherries and an artificial diet presented earlier emergence, shorter developmental time, lower number of adults per female, and a female-biased sex ratio compared to flies developing on strawberries. Overall, our findings demonstrated suitability of Barbados cherry as a host for D. suzukii, which renders management of D. suzukii in Neotropical region an even more challenging task.


Assuntos
Fragaria , Malpighiaceae , Animais , Barbados , Drosophila , Feminino , América do Sul
19.
PeerJ ; 7: e7123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259098

RESUMO

BACKGROUND: Compared to chemical control, the use of naturally occurring biological agents to control invasive pests is less threatening to the environment and human health. OBJECTIVES: Here, we assessed the ability of immature stages of the lacewing Ceraeochrysa caligata (Neuroptera: Chrysopidae) to prey upon different developmental stages of the red palm mite Raoiella indica (Acari: Tenuipalpidae), one of the most destructive invasive pests of palm trees in Neotropical regions. METHODS: Increasing densities of three stages of R. indica (eggs, immature stages, and adult females) were offered to C. caligata in coconut leaf arenas. The immature stages of C. caligata were less than 24 h old and were starved before being transferring to the arenas. The amount of prey consumed was recorded 6 h after releasing the C. caligata. RESULTS: Our results indicated that the ability of C. caligata to feed upon R. indica increased with the larval development of the predator. Higher feeding levels and shorter handling times were recorded for the first and second instars of C. caligata when preying upon the eggs and immature stages of R. indica. Furthermore, C. caligata individuals of different stages exhibited differential functional responses according to prey type (i.e., eggs, immatures, or adult females of R. indica). Ceraeochrysa caligata second instar individuals exhibited a sigmoid increase in consumption rate with increasing prey availability (i.e., a type III functional response) when preying upon immature stages of R. indica. However, when preying upon R. indica adult females, C. caligata second instar individuals exhibited a type II functional response (i.e., an increase in consumption rate with increasing prey availability, before reaching a plateau). Predator individuals of the first and third instar stages exhibited a type II functional response for all prey types. CONCLUSIONS: Collectively, our findings demonstrate that C. caligata, especially at the second instar stage, has potential as a tool for ecological management of the red palm mite.

20.
Pestic Biochem Physiol ; 156: 87-95, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027585

RESUMO

Environmental pollutants, such as insecticides, can alter the equilibrium of aquatic ecosystems, particularly those closely located to human occupations. The use of such anthropogenic compounds frequently results in the selection of resistant individuals. However, how the underlying insecticide resistance mechanisms interplay with the abilities of the resistant individuals to cope with other environmental challenges (e.g., predators) has not received adequate attention. Here, we evaluated whether resistance to pyrethroid insecticides in larvae of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae), would affect their abilities to survive other environmental challenges. We assessed the susceptibilities of the pyrethroid-resistant larvae to other insecticides (i.e., the oxadiazine indoxacarb and juvenile hormone mimic pyriproxyfen) and determined the activities of potential detoxification enzymes. Finally, we also recorded potential alterations in larva swimming behavior in the presence of predators, such as the water bug Belostoma anurum (Hemiptera: Belostomatidae). Our results revealed that high pyrethroid resistance was associated with moderate resistance to the other two insecticides. Furthermore, this multiple resistance was associated with higher detoxification activity by glutathione-S-transferases and general esterases. Interestingly, in comparison with insecticide-susceptible larvae, the pyrethroid-resistant larvae not only swam for longer periods and distances, but also took longer to be captured by B. anurum nymphs. Collectively, our findings revealed increased abilities to survive natural environmental challenges (e.g., predatory attacks) in mosquito larvae that express physiological and behavioral changes associated with multiple resistance to insecticides.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Animais , Bioensaio , Resistência a Inseticidas , Nitrilas/farmacologia , Piretrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...