Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927507

RESUMO

It is generally assumed that all estrogen-receptor-positive (ER+) breast cancers proliferate in response to estrogen and, therefore, examples of the estrogen-induced regression of ER+ cancers are paradoxical. This review re-examines the estrogen regression paradox for the Luminal A subtype of ER+ breast cancers. The proliferative response to estrogen is shown to depend on the level of ER. Mechanistically, a window of opportunity study of pre-operative estradiol suggested that with higher levels of ER, estradiol could activate the DREAM-MMB (Dimerization partner, Retinoblastoma-like proteins, E2F4, and MuvB-MYB-MuvB) pathway to decrease proliferation. The response of breast epithelium and the incidence of breast cancers during hormonal variations that occur during the menstrual cycle and at the menopausal transition, respectively, suggest that a single hormone, either estrogen, progesterone or androgen, could activate the DREAM pathway, leading to reversible cell cycle arrest. Conversely, the presence of two hormones could switch the DREAM-MMB complex to a pro-proliferative pathway. Using publicly available data, we examine the gene expression changes after aromatase inhibitors and ICI 182,780 to provide support for the hypothesis. This review suggests that it might be possible to integrate all current hormonal therapies for Luminal A tumors within a single theoretical schema.

2.
PNAS Nexus ; 2(5): pgad155, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37252002

RESUMO

Recent advancements in micro/nanofabrication techniques have led to the development of portable devices for high-throughput single-cell analysis through the isolation of individual target cells, which are then paired with functionalized microbeads. Compared with commercially available benchtop instruments, portable microfluidic devices can be more widely and cost-effectively adopted in single-cell transcriptome and proteome analysis. The sample utilization and cell pairing rate (∼33%) of current stochastic-based cell-bead pairing approaches are fundamentally limited by Poisson statistics. Despite versatile technologies having been proposed to reduce randomness during the cell-bead pairing process in order to statistically beat the Poisson limit, improvement of the overall pairing rate of a single cell to a single bead is typically based on increased operational complexity and extra instability. In this article, we present a dielectrophoresis (DEP)-assisted dual-nanowell array (ddNA) device, which employs an innovative microstructure design and operating process that decouples the bead- and cell-loading processes. Our ddNA design contains thousands of subnanoliter microwell pairs specifically tailored to fit both beads and cells. Interdigitated electrodes (IDEs) are placed below the microwell structure to introduce a DEP force on cells, yielding high single-cell capture and pairing rates. Experimental results with human embryonic kidney cells confirmed the suitability and reproducibility of our design. We achieved a single-bead capture rate of >97% and a cell-bead pairing rate of >75%. We anticipate that our device will enhance the application of single-cell analysis in practical clinical use and academic research.

3.
Heliyon ; 8(1): e08666, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028452

RESUMO

Estrogen is thought to cause proliferation of all estrogen receptor positive (ER+) breast cancers. Paradoxically, in the Women's Health Initiative Trial, estrogen-only hormone replacement therapy reduced the incidence and mortality of low grade, ER+, HER2- breast cancer. We gave estradiol to 19 post-menopausal women with newly diagnosed low-grade, ER+, HER2- breast cancer in a prospective window of opportunity clinical trial and examined the changes in proliferation and gene expression before and after estradiol treatment. Ki67 decreased in 13/19 (68%) patients and 8/13 (62%) showed a decrease in Risk of Recurrence Score. We chose three prototypical estrogen responders (greatest decrease in ROR) and non-responders (no/minimal change in ROR) and applied a differential gene expression analysis to develop pre-treatment (PRESTO-30core) and post-treatment (PRESTO-45surg) gene expression profiles. The PRESTO-30core predicted adjuvant benefit in a published series of tamoxifen, the partial estrogen agonist. Of the 45 genes in the PRESTO-45surg, thirty contain the Cell cycle genes Homology Region (CHR) motif that binds the class B multi-vulva complex (MuvB) a member of the DREAM (Dimerization partner, retinoblastoma-like proteins, E2F, MuvB) complex responsible for reversible cell cycle arrest or quiescence. There was also near uniform suppression (89%) of the remaining DREAM genes consistent with estrogen induced activation of the DREAM complex to mediate cell cycle block after a short course of estrogens. To our knowledge, this is the first report to show estrogen modulation of DREAM genes and suggest involvement of DREAM pathway associated quiescence in endocrine responsive post-menopausal ER+ breast cancers.

4.
ACS Nano ; 16(1): 211-220, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34559518

RESUMO

Current approaches in targeted patient treatments often require the rapid isolation of specific rare target cells. Stream-based dielectrophoresis (DEP) based cell sorters have the limitation that the maximum number of sortable cell types is equivalent to the number of output channels, which makes upscaling to a higher number of different cell types technically challenging. Here, we present a microfluidic platform for selective single-cell sorting that bypasses this limitation. The platform consists of 10 000 nanoliter wells which are placed on top of interdigitated electrodes (IDEs) that facilitate dielectrophoresis-driven capture of cells. By use of a multisectorial design formed by 10 individually addressable IDE structures, our platform can capture a large number of different cell types. The sectorial approach allows for fast and straightforward modification to sort complex samples as different cell types are captured in different sectors and therefore removes the need for individual output channels per cell type. Experimental results obtained with a mixed sample of benign (MCF-10A) and malignant (MDA-MB-231) breast cells showed a target to nontarget sorting accuracy of over 95%. We envision that the high accuracy of our platform, in addition to its versatility and simplicity, will aid clinical environments where reliable sorting of varying complex samples is essential.


Assuntos
Técnicas Analíticas Microfluídicas , Humanos , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/métodos , Desenho de Equipamento , Separação Celular/métodos , Microfluídica
5.
Clin Exp Metastasis ; 32(4): 393-403, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25759211

RESUMO

Breast cancer is the most common cancer in women with the leading cause of death being metastasis, the spread of cancer to distant organs. For those patients with high-risk estrogen receptor positive (ER+) breast cancer, an increased expression of the glycoprotein MUC1 is associated with resistance to anti-hormonal therapy, metastasis and death. Tumor cells may use MUC1 to metastasize by exploiting the vascular adhesion pathways used by leukocytes during the inflammatory response. MUC1 is a type 1 transmembrane protein whose cytoplasmic tail acts as a scaffold for several signaling pathways including the non-receptor kinase Src, a signaling molecule involved in cell differentiation, proliferation, adhesion and motility. This review will highlight our current knowledge of how MUC1/ICAM-1 binding can lead to the recruitment and activation of Src and propose a novel role for lipid raft microdomains in this promigratory signaling. Improved understanding of the mechanism of metastases and the underlying signaling cascade is a prerequisite to the discovery of therapeutic targets to prevent metastasis and death in ER+ breast cancer patients.


Assuntos
Neoplasias da Mama/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Microdomínios da Membrana/metabolismo , Mucina-1/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Movimento Celular , Feminino , Humanos , Dados de Sequência Molecular , Metástase Neoplásica/patologia , Ligação Proteica , Receptores de Estrogênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...