Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5231-5237, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639404

RESUMO

The carrier losses due to radiative recombination in monolayer transition metal dichalcogenides are studied using fully microscopic many-body models. The density- and temperature-dependent losses in various Mo- and W-based materials are shown to be dominated by Coulomb correlations beyond the Hartree-Fock level. Despite the much stronger Coulomb interaction in 2D materials, the radiative losses are comparable-if not weaker-than in conventional III-V materials. A strong dependence on the dielectric environment is found in agreement with experimental results.

2.
Opt Lett ; 48(8): 2094-2097, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058650

RESUMO

High harmonic generation (HHG) in monolayer MoS2 is studied using fully microscopic many-body models based on the semiconductor Bloch equations and density functional theory. It is shown that Coulomb correlations lead to a dramatic enhancement of HHG. In particular, near the bandgap, enhancements of two orders of magnitude or more are observed for a wide range of excitation wavelengths and intensities. For excitation at excitonic resonances, strong absorption leads to spectrally broad sub-floors of the harmonics that is absent without Coulomb interaction. The widths of these sub-floors depend strongly on the dephasing time for polarizations. For times of the order of 10 fs the broadenings are comparable to the Rabi energies and reach one electronvolt at fields of approximately 50 MV/cm. The intensities of these contributions are approximately four to six orders below the peaks of the harmonics.

3.
J Phys Condens Matter ; 34(28)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453129

RESUMO

Anab initiobased fully microscopic many-body approach is used to study the carrier relaxation dynamics in monolayer transition-metal dichalcogenides. Bandstructures and wavefunctions as well as phonon energies and coupling matrix elements are calculated using density functional theory. The resulting dipole and Coulomb matrix elements are implemented in the Dirac-Bloch equations to calculate carrier-carrier and carrier-phonon scatterings throughout the whole Brillouin zone (BZ). It is shown that carrier scatterings lead to a relaxation into hot quasi-Fermi distributions on a single femtosecond timescale. Carrier cool down and inter-valley transitions are mediated by phonon scatterings on a picosecond timescale. Strong, density-dependent energy renormalizations are shown to be valley-dependent. For MoTe2, MoSe2and MoS2the change of energies with occupation is found to be about 50% stronger in the Σ and Λ side valleys than in theKandK' valleys. However, for realistic carrier densities, the materials always maintain their direct bandgap at theKpoints of the BZ.

4.
Phys Rev Lett ; 125(8): 083901, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909805

RESUMO

The influence of propagation on the nonperturbative high-harmonic features in long-wavelength strong pulse excited semiconductors is studied using a fully microscopic approach. For sample lengths exceeding the wavelength of the exciting light, it is shown that the propagation effectively acts as a very strong additional dephasing that reduces the relative height of the emission plateau up to six orders of magnitude. This propagation induced dephasing clarifies the need to use extremely short polarization decay times for the quantitative analysis of experimental observations.

5.
Opt Lett ; 39(6): 1573-6, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690841

RESUMO

We present a study of an actively stabilized optically pumped semiconductor laser operating single frequency at a wavelength of 1015 nm. In free running operation, the laser exhibits a single frequency output power of 15 W with a linewidth of 995 kHz for a sampling time of 1 s. The intensity and the frequency of the laser were independently stabilized to reach a laser linewidth of only 4 kHz for the same sampling time. To identify and reduce the different sources of noise, the relative intensity noise and frequency noise spectral density are investigated under various conditions.

6.
Opt Lett ; 34(22): 3511-3, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19927194

RESUMO

Up to 136 mW of cw single-frequency output at 295 nm was obtained from a frequency-quadrupled optically pumped semiconductor laser. The highly strained InGaAs quantum-well semiconductor laser operates at 1178 nm in a single frequency. The single-frequency intracavity-doubled 589 nm output is further converted to 295 nm in an external resonator using beta-BaB(2)O(4).

7.
Opt Lett ; 33(15): 1705-7, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18670510

RESUMO

We report an all-solid-state laser system that generates over 200 mW cw at 244 nm. An optically pumped semiconductor laser is internally frequency doubled to 488 nm. The 488 nm output is coupled to an external resonator, where it is converted to 244 nm using a CsLiB(6)O(10) (CLBO) crystal. The output power is limited by the available power at 488 nm, and no noticeable degradation in output power was observed over a period of several hours.

8.
Opt Lett ; 31(24): 3612-4, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17130920

RESUMO

We propose an efficient coherent power scaling scheme, the multichip vertical-external-cavity surface-emitting laser (VECSEL), in which the waste heat generated in the active region is distributed on multi-VECSEL chips such that the pump level at the thermal rollover is significantly increased. The advantages of this laser are discussed, and the development and demonstration of a two-chip VECSEL operating around 970 nm with over 19 W of output power is presented.

9.
Opt Lett ; 31(22): 3300-2, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17072403

RESUMO

We provide what we believe is the first closed-loop prediction of a semiconductor laser performance using fully microscopic many-body models for the spontaneous emission, gain, and carrier recombination losses due to Auger processes without having to resort to phenomenological adjustable fit parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...