Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765468

RESUMO

Islands offer exclusive prisms for an experimental investigation of biodiversity x ecosystem function interplay. Given that species in upper trophic layers, e.g., arthropod predators, experience a comparative disadvantage on small, isolated islands, such settings can help to clarify how predation features within biotic resistance equations. Here, we use observational and manipulative studies on a chain of nine Indonesian islands to quantify predator-mediated biotic resistance against the cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) and the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Across island settings, a diverse set of generalist lacewing, spider and ladybeetle predators aggregates on P. manihoti infested plants, attaining max. (field-level) abundance levels of 1.0, 8.0 and 3.2 individuals per plant, respectively. Though biotic resistance-as imperfectly defined by a predator/prey ratio index-exhibits no inter-island differences, P. manihoti population regulation is primarily provided through an introduced monophagous parasitoid. Meanwhile, resident predators, such as soil-dwelling ants, inflict apparent mortality rates up to 100% for various S. frugiperda life stages, which translates into a 13- to 800-fold lower S. frugiperda survivorship on small versus large islands. While biotic resistance against S. frugiperda is ubiquitous along the island chain, its magnitude differs between island contexts, seasons and ecological realms, i.e., plant canopy vs. soil surface. Hence, under our experimental context, generalist predators determine biotic resistance and exert important levels of mortality even in biodiversity-poor settings. Given the rapid pace of biodiversity loss and alien species accumulation globally, their active conservation in farmland settings (e.g., through pesticide phasedown) is pivotal to ensuring the overall resilience of production ecosystems.

2.
Insects ; 12(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801159

RESUMO

Rice production is often associated with high pesticide input. To improve farmers' practice, sustainable management approaches are urgently needed, such as ecological engineering (EE), which aims at enhancing beneficial arthropods while reducing pesticides. Here, we implemented and tested EE in Cambodian rice fields by comparing: (i) fields not treated with pesticides (control); (ii) fields not treated with pesticides but with non-rice crops planted in the surrounding (EE); and (iii) conventionally farmed fields using pesticides (CR). Using benefit-cost analysis, we compared the economic value of each treatment. The non-rice crops preferred by men and women farmers as well as farmers' willingness to implement EE were assessed using surveys. We sampled arthropod abundance and richness in rice fields and bunds during two seasons. During the dry season, we compared EE and CR among three Cambodian provinces. During the wet season, we specifically assessed the differences in EE, control and CR in arthropod abundance and rice yield in one province. While withholding from using pesticides did not result in a decrease in yield in EE and control treatments, parasitoid abundance was higher in both treatments during the wet season. The benefit-cost ratio was highest for EE and control treatments. Pesticides were likely the main driver causing low arthropod abundance, without any benefit towards increased rice yield. The proper implementation of EE coupled with farmers' knowledge of ecologically based pest management is a promising solution towards sustainable rice production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...