Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(51): eadj8442, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117896

RESUMO

Forkhead box A1 (FoxA1)+ regulatory T cells (Tregs) exhibit distinct characteristics from FoxP3+ Tregs while equally effective in exerting anti-inflammatory properties. The role of FoxP3+ Tregs in vivo has been challenged, motivating a better understanding of other Tregs in modulating hyperactive immune responses. FoxA1+ Tregs are generated on activation of the transcription factor FoxA1 by interferon-ß (IFNß), an anti-inflammatory cytokine. T cell activation, expansion, and function hinge on metabolic adaptability. We demonstrated that IFNß promotes a metabolic rearrangement of FoxA1+ Tregs by enhancing oxidative phosphorylation and mitochondria clearance by mitophagy. In response to IFNß, FoxA1 induces a specific transcription variant of adenosine 5'-monophosphate-activated protein kinase (AMPK) γ2 subunit, PRKAG2.2. This leads to the activation of AMPK signaling, thereby enhancing mitochondrial respiration and mitophagy by ULK1-BNIP3. This IFNß-FoxA1-PRKAG2.2-BNIP3 axis is pivotal for their suppressive function. The involvement of PRKAG2.2 in FoxA1+ Treg, not FoxP3+ Treg differentiation, underscores the metabolic differences between Treg populations and suggests potential therapeutic targets for autoimmune diseases.


Assuntos
Proteínas Quinases Ativadas por AMP , Linfócitos T Reguladores , Proteínas Quinases Ativadas por AMP/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Anti-Inflamatórios/metabolismo
2.
Protein Pept Lett ; 29(7): 631-640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36165538

RESUMO

BACKGROUND: Granzyme B can induce apoptosis in target cells by direct and indirect activation of caspases and cleavage of central caspase substrates. Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein and its expression increases following prostate cancer progression. OBJECTIVE: In this study, we designed a fusion protein including mutant granzyme B, the influenza virus hemagglutinin HA-2 N-terminal, and PSMA ligand to construct GrB-HA-PSMA ligand fusion protein as a molecular agent for selective targeting of PSMA-positive (LNCaP) cells. METHODS: The DNA sequence of our designed structure was synthesized and cloned into a pET28a expression vector. The recombinant protein was expressed in E. coli origami bacteria and then purified. The expression of the recombinant protein was verified by SDS PAGE and ELISA method. Furthermore, ELISA and flow cytometry assays were utilized to investigate the efficiency of binding and permeability of the recombinant protein into the LNCaP cells. Finally, cell proliferation and apoptosis rate were evaluated by MTT assay and flow cytometry assay, respectively. HeLa and PC3 cell lines were used as controls. RESULTS: The results showed that GrB-HA-PSMA ligand fusion protein could specifically bind and internalize into the PSMA-positive cells. Furthermore, treatment of the cells with GrB-HA-PSMA ligand fusion protein resulted in increased apoptotic cell death and decreased proliferation of LNCaP cells. CONCLUSION: Our findings indicate the specificity of GrB-HA-PSMA ligand fusion protein for PSMA-positive cells and suggest that this fusion protein is a potential candidate for prostate cancer targeted therapy.


Assuntos
Escherichia coli , Neoplasias da Próstata , Apoptose , Caspases/metabolismo , Caspases/farmacologia , Linhagem Celular Tumoral , Escherichia coli/metabolismo , Glicoproteínas , Granzimas/genética , Hemaglutininas/farmacologia , Humanos , Ligantes , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-34385365

RESUMO

BACKGROUND AND OBJECTIVE: The aim of this study was to determine whether natural killer T (NKT) cells, including invariant (i) NKT cells, have clinical value in preventing the progression of multiple sclerosis (MS) by examining the mechanisms by which a distinct self-peptide induces a novel, protective invariant natural killer T cell (iNKT cell) subset. METHODS: We performed a transcriptomic and functional analysis of iNKT cells that were reactive to a human collagen type II self-peptide, hCII707-721, measuring differentially induced genes, cytokines, and suppressive capacity. RESULTS: We report the first transcriptomic profile of human conventional vs novel hCII707-721-reactive iNKT cells. We determined that hCII707-721 induces protective iNKT cells that are found in the blood of healthy individuals but not progressive patients with MS (PMS). By transcriptomic analysis, we observed that hCII707-721 promotes their development and proliferation, favoring the splicing of full-length AKT serine/threonine kinase 1 (AKT1) and effector function of this unique lineage by upregulating tumor necrosis factor (TNF)-related genes. Furthermore, hCII707-721-reactive iNKT cells did not upregulate interferon (IFN)-γ, interleukin (IL)-4, IL-10, IL-13, or IL-17 by RNA-seq or at the protein level, unlike the response to the glycolipid alpha-galactosylceramide. hCII707-721-reactive iNKT cells increased TNFα only at the protein level and suppressed autologous-activated T cells through FAS-FAS ligand (FAS-FASL) and TNFα-TNF receptor I signaling but not TNF receptor II. DISCUSSION: Based on their immunomodulatory properties, NKT cells have a potential value in the treatment of autoimmune diseases, such as MS. These significant findings suggest that endogenous peptide ligands can be used to expand iNKT cells, without causing a cytokine storm, constituting a potential immunotherapy for autoimmune conditions, including PMS.


Assuntos
Colágeno Tipo II , Agentes de Imunomodulação , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Recidivante-Remitente/sangue , Células T Matadoras Naturais/fisiologia , Subpopulações de Linfócitos T/fisiologia , Transcriptoma , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/metabolismo , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
4.
J Biomed Phys Eng ; 11(2): 229-238, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33937129

RESUMO

BACKGROUND: Ionizing radiation plays a significant role in cancer treatment. Despite recent advances in radiotherapy approaches, the existence of irradiation-resistant cancer cells is still a noteworthy challenge. Therefore, developing novel therapeutic approaches are still warranted in order to increase the sensitivity of tumor cells to radiation. Many types of research rely on the role of mitochondria in radiation protection. OBJECTIVE: Here, we aimed to target the mitochondria of monocyticleukemia (THP-1) radio-resistant cell line cells by a mitochondrial disrupting peptide, D (KLAKLAK)2, and investigate the synergistic effect of Gamma-irradiation and KLA for tumor cells inhibition in vitro. MATERIAL AND METHODS: In this experimental study, KLA was delivered into THP-1 cells using a Cell-Penetrating Peptide (CPP).The cells were then exposed to gamma-ray radiation both in the presence and absence of KLA conjugated with CPP. The impacts of KLA, ionizing radiation or combination of both were then evaluated on the cell proliferation and apoptosis of THP-1 cells using MTT assay and flow cytometry, respectively. RESULTS: The MTT assay indicated the anti-proliferative effects of combined D (KLAKLAK)2 peptide with ionizing radiation on THP-1cells. Moreover, synergetic effects of KLA and ionizing radiation reduced cell viability and consequently enhanced cell apoptosis. CONCLUSION: Using KLA peptide in combination with ionizing irradiation increases the anticancer effects of radio-resistant THP-1 cells. Therefore, the combinational therapy of (KLAKLAK)2 and radiation is a promising strategy for cancer treatment the in future.

5.
Cell Mol Immunol ; 18(8): 1904-1919, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572163

RESUMO

A disintegrin and metalloproteinase (ADAM)12 was previously found to be expressed in T cells in the inflamed brain. However, the function of ADAM12 in T-cell responses in general and in tissue inflammation has not been examined. Here, we studied the role of ADAM12 in T-cell responses, fate determination on activation, and its functions in T cells to mediate tissue inflammation. We identified ADAM12 as a costimulatory molecule that is expressed on naive T cells and downregulated on stimulation. ADAM12 mimics CD28 costimulatory signaling to activate and induce the proliferation of T-helper 1 (Th1) cells. Monoclonal ADAM12 Fab antibodies trigger T-cell activation by amplifying TCR signaling to stimulate T-bet-mediated IFNγ production. Lack of genomic ADAM12 and its knockdown in T cells diminished T-bet and IFNγ production in Th1 cells, whereas other T cells, including Th17 cells, were unaffected. ADAM12 had similar functions in vivo on myelin antigen (MOG35-55)-induced T-cell activation. We found that genetic loss of ADAM12 profoundly alleviated Th1-mediated neuroinflammation and thus disease severity in experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Transcriptomic profiling of MOG35-55-specific ADAM12-/- T cells revealed differentially expressed genes that are important for T-cell activation, proliferation, and costimulatory signaling and Th1 pathogenicity, consistent with their inability to cause T-cell-mediated skin inflammation in a model of adoptive delayed-type hypersensitivity. We conclude that ADAM12 is a T-cell costimulatory molecule that contributes to the pathogenesis of tissue inflammation and a potential target for the treatment of Th1-mediated diseases.


Assuntos
Encefalomielite Autoimune Experimental , Células Th1 , Animais , Inflamação/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Células Th17
6.
Artigo em Inglês | MEDLINE | ID: mdl-32807059

RESUMO

The article has been withdrawn by agreement between the editors and publisher of Current Drug Discovery Technologies. The authors are not responding to the editor's requests to provide the language-edited version.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

7.
Mol Biosyst ; 10(11): 3014-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25196995

RESUMO

A promising strategy for finding new cancer drugs is to use metabolic network models to investigate the essential reactions or genes in cancer cells. In this study, we present a generic constraint-based model of cancer metabolism, which is able to successfully predict the metabolic phenotypes of cancer cells. This model is reconstructed by collecting the available data on tumor suppressor genes. Notably, we show that the activation of oncogene related reactions can be explained by the inactivation of tumor suppressor genes. We show that in a simulated growth medium similar to the body fluids, our model outperforms the previously proposed model of cancer metabolism in predicting expressed genes.


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genes Neoplásicos , Humanos , Modelos Genéticos
8.
EXCLI J ; 12: 15-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27034629

RESUMO

It has been suggested that the "visibility" of an article influences its citation count. More specifically, it is believed that the social media can influence article citations.Here we tested the hypothesis that inclusion of scholarly references in Wikipedia affects the citation trends. To perform this analysis, we introduced a citation "propensity" measure, which is inspired by the concept of amino acid propensity for protein secondary structures. We show that although citation counts generally increase during time, the citation "propensity" does not increase after inclusion of a reference in Wikipedia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...