Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(13): 22225-22232, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381301

RESUMO

We investigate and experimentally demonstrate a cladding modulated Bragg grating superstructure as a dynamically tunable and reconfigurable multi-wavelength notch filter. A non-uniform heater element was implemented to periodically modulate the effective index of the grating. The Bragg grating bandwidth is controlled by judiciously positioning loading segments away from the waveguide core, resulting in a formation of periodically spaced reflection sidebands. The thermal modulation of a periodically configured heater elements modifies the waveguide effective index, where an applied current controls the number and intensity of the secondary peaks. The device was designed to operate in TM polarization near the central wavelength of 1550 nm and was fabricated on a 220-nm silicon-on-insulator platform, using titanium-tungsten heating elements and aluminum interconnects. We experimentally demonstrate that the Bragg grating self-coupling coefficient can be effectively controlled in a range from 7 mm-1 to 110 mm-1 by thermal tuning, with a measured bandgap and sideband separation of 1 nm and 3 nm, respectively. The experimental results are in excellent agreement with simulations.

2.
Opt Lett ; 46(19): 4821-4824, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598208

RESUMO

Current optical communication systems rely on the use of wavelength division multiplexing (WDM) to keep up with the increasing data rate requirements. The wavelength demultiplexer is the key component to implement WDM systems. In this Letter, we design and experimentally demonstrate a demultiplexer based on a curved grating waveguide geometry that separates eight channels with a spacing of 10 nm (1249 GHz) around the central wavelength of 1550 nm. The fabricated device shows very low insertion loss (∼1dB) and a crosstalk (XT) below -25dB. This device leverages metamaterial index engineering to implement the lateral cladding on one side of the waveguide. This makes it possible to design a waveguide grating with highly directional lateral emission by operating in a regime where diffraction into the silica upper cladding is frustrated, thus suppressing losses due to off-chip radiation.

3.
Opt Lett ; 46(15): 3733-3736, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329268

RESUMO

Integrated optical antennas are key components for on-chip light detection and ranging technology (LIDAR). In order to achieve a highly collimated far field with reduced beam divergence, antenna lengths on the order of several millimeters are required. In the high-index contrast silicon photonics platform, achieving such long antennas typically demands weakly modulated gratings with lithographic minimum feature sizes below 10 nm. Here, we experimentally demonstrate a new, to the best of our knowledge, strategy to make long antennas in silicon waveguides using a metamaterial subwavelength grating (SWG) waveguide core loaded with a lateral periodic array of radiative elements. The mode field confinement is controlled by the SWG duty cycle, and the delocalized propagating mode overlaps with the periodic perturbations. With this arrangement, weak antenna radiation strength can be achieved while maintaining a minimum feature size as large as 80 nm. Using this strategy, we experimentally demonstrate a 2-millimeter-long, single-etched subwavelength-engineered optical antenna on a conventional 220 nm SOI platform, presenting a measured far-field beam divergence of 0.1° and a wavelength scanning sensitivity of 0.13°/nm.

4.
Opt Express ; 29(11): 15867-15881, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154164

RESUMO

Spectral filters are important building blocks for many applications in integrated photonics, including datacom and telecom, optical signal processing and astrophotonics. Sidewall-corrugated waveguide grating is typically the preferred option to implement spectral filters in integrated photonic devices. However, in the high-index contrast silicon-on-insulator (SOI) platform, designs with corrugation sizes of only a few tens of nanometers are often required, which hinders their fabrication. In this work, we propose a novel geometry to design complex Bragg filters with an arbitrary spectral response in silicon waveguides with laterally coupled Bragg loading segments. The waveguide core is designed to operate with a delocalized mode field, which helps reduce sensitivity to fabrication errors and increase accuracy on synthesized coupling coefficients and the corresponding spectral shape control. We present an efficient design strategy, based on the layer-peeling and layer-adding algorithms, that allows to readily synthesize an arbitrary target spectrum for our cladding-modulated Bragg gratings. The proposed filter concept and design methodology are validated by designing and experimentally demonstrating a complex spectral filter in an SOI platform, with 20 non-uniformly spaced spectral notches with a 3-dB linewidth as small as 210 pm.

5.
Opt Lett ; 46(10): 2409-2412, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988596

RESUMO

Diffraction gratings that redirect light propagating in a channel waveguide to an on-chip slab are emerging as important building blocks in integrated photonics. Such distributed Bragg deflectors enable precise shaping of slab confined beams for a variety of applications, including wavelength multiplexing, optical phased array feeding, and coupling interfaces for on-chip point-to-point communications. However, these deflectors suffer from significant losses caused by off-chip radiation. In this Letter, we show, for the first time, to the best of our knowledge, that off-chip radiation can be dramatically reduced by using the single-beam phase matching condition and subwavelength metamaterial refractive index engineering. We present a deflector design with losses below 0.3 dB, opening a path toward new applications of distributed Bragg deflectors in integrated photonics.

6.
Opt Lett ; 45(20): 5668-5671, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057254

RESUMO

Optical antennas are key components in optical phased arrays for light detection and ranging technology requiring long sensing range and high scanning resolution. To achieve a narrow beam width in the far-field region, antenna lengths of several millimeters or more are required. To date, such long antennas have been impossible to achieve in silicon waveguides because currently demonstrated technologies do not allow accurate control of grating strength. Here, we report on a new type of surface-emitting silicon waveguide with a dramatically increased antenna length of L=3.65mm. This is achieved by using a subwavelength metamaterial waveguide core evanescently coupled with radiative segments laterally separated from the core. This results in a far-field diffracted beam width of 0.025°, which is a record small beam divergence for a silicon photonics surface-emitting device. We also demonstrate that by using a design with L-shaped surface-emitting segments, the radiation efficiency of the antenna can be substantially increased compared to a conventional design, with an efficiency of 72% at the wavelength of 1550 nm.

7.
Opt Express ; 27(23): 33180-33193, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878392

RESUMO

In integrated optical circuits light typically travels in waveguides which provide both vertical and horizontal confinement, enabling efficient routing between different parts of the chip. However, for a variety of applications, including on-chip wireless communications, steerable phased arrays or free-space inspired integrated optics, optical beams that can freely propagate in the horizontal plane of a 2D slab waveguide are advantageous. Here we present a distributed Bragg deflector that enables well controlled coupling from a waveguide mode to such a 2D on-chip beam. The device consists of a channel waveguide and a slab waveguide region separated by a subwavelength metamaterial spacer to prevent uncontrolled leakage of the guided mode. A blazed grating in the waveguide sidewall is used to gradually diffract light into the slab region. We develop a computationally efficient strategy for designing gratings that generate arbitrarily shaped beams. As a proof-of-concept we design, in the silicon-on-insulator platform, a compact ×75 Gaussian beam expander and a partial beam deflector. For the latter, we also demonstrate a prototype device with experimental results showing good agreement with our theoretical predictions. We also demonstrate via a rigorous simulation that two such couplers in a back-to-back configuration efficiently couple light, suggesting that these devices can be used as highly directive antennas in the chip plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...