Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 38(8): 1330-1343, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738952

RESUMO

OBJECTIVE: Cyclic acetals such as are naturally occurring compounds capable of acting as co-initiators during free-radical polymerisation, and potentially serve to offer non-allergic and biologically less toxic alternatives to conventional (tertiary) amines. The current study aimed to evaluate the polymerisation efficiency and potential toxicity of cyclic acetals compared with conventional photoinitiator systems in photocurable dental resins. METHODS: Both, 1,3 benzodioxole (BZD) and piperonyl alcohol (PA) were used in 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 6.0 mol% concentrations. Whereas, N-phenyl glycine (NPG) was utilised in 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 mol% concentrations for photopolymerisation of an unfilled model resin system, BisGMA and TEGDMA (1:1 mass %), involving three separate camphorquinone (CQ) concentrations of 0.5 (Low), 1.0 (Intermediate) and 1.5 (High) mol%. Conventional tertiary amines; ethyl-4-dimethyamino benzoate (EDMAB) and dimethylaminoethyl methacrylate (DMAEMA) were utilised for comparison. Real-time degree of conversion (DC, %) was evaluated using Fourier transform near-infra-red spectroscopy and quantum yield of conversion of CQ was calculated using UV-Vis spectroscopy. Cytotoxicity of NPG and cyclic acetals were assessed using MTT to determine metabolic activity of human dental pulp cells (HDPCs). RESULTS: The cyclic acetals were capable of facilitating free radical polymerisation as co-initiators at all three CQ concentrations. Furthermore, the use of NPG as a co-initiator resulted in post-irradiation DC (%) that were comparable to both EDMAB and DMAEMA for all CQ concentrations. Alternative compounds facilitated the hydrogen abstraction process, which provided high conversion of CQ molecules. Quantum yield increased from 0.009 ± 0.0001 (0.5 mol%) to 0.03 ± 0.006 (6.0 mol%), and 0.01 ± 0.0003 (0.5 mol%) to 0.04 ± 0.001 (6.0 mol%), for respective BZD and PA formulations involving 1.0 mol% CQ. The use of NPG led to relatively higher quantum yield values (Up to 0.09 ± 0.007 at 4.0 mol%), though it exhibited competitive effects in absorbing blue light, which might be attributed to the photolytic degradation of NPG and the formation of N-methylaniline. MTT assay indicated alternative co-initiators to be comparatively less cytotoxic than EDMAB and CQ. Relative metablic activity of HDPCs treated with BZD, PA, and NPG eluates were 58.3 ± 15.7, 57.5 ± 17.4 and 64.6 ± 12.2 %, when compared with untreated HDPCs group (Control), respectively. Exposure to DMAEMA-based eluate led to relative metabolic activity (60.0 ± 0.5 %) that was comparable to that of cyclic acetals. Treatment with neat model resin eluate displayed the highest relative reduction in metabolic activity (28.9 ± 22.4) (P < 0.05), suggesting bisGMA and TEGDMA monomers played significant role in the overall cytotoxicity of photocurable systems involving HDPCs. SIGNIFICANCE: Cyclic acetals were capable of facilitating photo-induced free radical polymerisation reactions with relatively less cytotoxicity compared with their amine counterparts, which might realise reduced cytotoxicity of photocurable materials used for dentistry and biomaterial applications.


Assuntos
Acetais , Resinas Compostas , Aminas , Bis-Fenol A-Glicidil Metacrilato/química , Resinas Compostas/química , Humanos , Teste de Materiais , Metacrilatos/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/toxicidade
2.
Oper Dent ; 46(3): 271-282, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34370026

RESUMO

OBJECTIVE: This study aimed to evaluate the irradiance and the quality of LED light curing units (LCUs) in primary and secondary clinics in the UK and to assess the effect of damage, contamination, use of protective sleeves, and distance of light tips to target on the irradiance and performance of LCUs. METHODS: The irradiance levels (mW/cm2) of 26 LED LCUs from general dental practices and 207 LED LCUs from two dental hospitals were measured using a digital radiometer (Blue Phase II, Ivoclar, Vivadent, Amherst, NY). Ten LED light guide tips (Satelec Mini, Acteon, Merignac, France) were selected to evaluate the effect of chipping, contamination (tip debris), and use of protective sleeves and tips to sensor distance on irradiance (mW/cm2) using a MARC Resin Calibrator (Blue Light Analytics, Halifax, Canada). Homogeneity of the light output was evaluated using a laser beam profiler (SP620; Ophir-Spiricon, North Longan, UT, USA). Statistical analysis was conducted using a one-way analysis of variance (ANOVA) with post hoc Tukey test (α=0.05) and linear regression with stepwise correlation tests. RESULTS: Thirty-three percent of the LCUs delivered irradiance output less than 500 mW/cm2. The condition of the light curing tips was poor, with 16% contaminated with resin debris, 26% damaged, and 10% both contaminated and damaged. The irradiance output was significantly reduced in contaminated (62%) and chipped (50%) light curing tips and when using protective sleeves (24%) (p<0.05). Irradiance was also reduced when increasing the distance with 25% and 34% reduction at 7 mm and 10 mm, respectively (p<0.05). CONCLUSION: There remains a lack of awareness of the need for regular monitoring and maintenance of dental LCUs. Damaged and contaminated light curing tips, use of protective sleeves, and increasing the distance from the restoration significantly reduced the irradiance output and the performance of the LCUs.


Assuntos
Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários , Resinas Compostas , Teste de Materiais , Radiometria , Reino Unido
3.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444205

RESUMO

Light-emitting diodes (LEDs) demonstrate therapeutic effects for a range of biomedical applications, including photodisinfection. Bands of specific wavelengths (centered at 405 nm) are reported to be the most antimicrobial; however, there remains no consensus on the most effective irradiation parameters for optimal photodisinfection. The aim of this study was to assess decontamination efficiency by direct photodisinfection of monomicrobial biofilms using a violet-blue light (VBL) single-wavelength array (SWA) and multiwavelength array (MWA). Mature biofilms of nosocomial bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) were grown on 96-well polypropylene PCR plates. The biofilms were then exposed to VBL for 2,700 s (SWA) and 1,170 s (MWA) to deliver 0 to 670 J/cm2, and the antibacterial activity of VBL was assessed by comparing the seeding of the irradiated and the nonirradiated biofilms. Nonirradiated groups were used as controls. The VBL arrays were characterized optically (spectral irradiance and beam profile) and thermally. The SWA delivered 401-nm VBL and the MWA delivered between 379-nm and 452-nm VBL, albeit at different irradiances and with different beam profiles. In both arrays, the irradiated groups were exposed to increased temperatures compared to the nonirradiated controls. All bacterial isolates were susceptible to VBL and demonstrated reductions in the seeding of exposed biofilms compared with the nonirradiated controls. VBL at 405 nm exerted the most antimicrobial activity, exhibiting reductions in seeding of up to 94%. Decontamination efficiency is dependent on the irradiation parameters, bacterial species and strain, and experimental conditions. Controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology.IMPORTANCE This study reports the efficacy of VBL and blue light (BL) and their antimicrobial activity against mature biofilms of a range of important nosocomial pathogens. While this study investigated the antibacterial activity of a range of wavelengths of between 375 and 450 nm and identified a specific wavelength region (∼405 nm) with increased antibacterial activity, decontamination was dependent on the bacterial species, strain, irradiation parameters, and experimental conditions. Further research with controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/efeitos da radiação , Bactérias/efeitos da radiação , Biofilmes/efeitos da radiação , Infecção Hospitalar/microbiologia , Luz , Acinetobacter baumannii/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Biomassa , Descontaminação/métodos , Escherichia coli/efeitos da radiação , Pseudomonas aeruginosa/efeitos da radiação , Staphylococcus aureus/efeitos da radiação
4.
Dent Mater ; 34(9): 1278-1288, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29857990

RESUMO

OBJECTIVE: To determine the limitations of using light-curable resin-based luting composites (RBLCs) to bond indirect ceramic/resin-composite restorations by measuring light transmittance through indirect restorative materials and the resulting degree of conversion (DC) of the luting-composites placed underneath. METHODS: Various thicknesses (0-4mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing filters. A commercial, light curable RBLC, RelyX Veneer (control) was compared with four experimental RBLCs of the following composition: TEGDMA/BisGMA (50/50 or 30/70wt%, respectively); camphorquinone/amine (0.2/0.8wt%) or Lucirin-TPO (0.42wt%); microfillers (55wt%) and nanofillers (10wt%). RBLCs covered with the LAVA filter were light-cured for 40s, either with the dual-peak BluephaseG2 or an experimental device emitting either in the blue or violet visible band. The samples were analyzed by Raman spectroscopy to determine DC. Light transmittance through the filters was measured using a common spectroscopy technique. RESULTS: All the factors studied significantly influenced DC (p<0.05). RBLCs with increased TEGDMA content exhibited higher DC. Only small differences were observed comparing DC without filters and filters ≤1mm (p>0.05). For thicknesses ≥2mm, significant reductions in DC were observed (p<0.05). Transmittance values revealed higher filter absorption at 400nm than 470nm. A minimal threshold of irradiance measured through the filters that maintained optimal DC following 40s irradiation was identified for each RBLC formulation, and ranged between 250-500mW/cm2. SIGNIFICANCE: This work confirmed that optimal photopolymerization of RBLCs through indirect restorative materials (≤4mm) and irradiation time of 40s is possible, but only in some specific conditions. The determination of such conditions is likely to be key to clinical success, and all the factors need to be optimized accordingly.


Assuntos
Resinas Compostas/química , Materiais Dentários/química , Cura Luminosa de Adesivos Dentários , Bis-Fenol A-Glicidil Metacrilato/química , Cânfora/análogos & derivados , Cânfora/química , Lâmpadas de Polimerização Dentária , Teste de Materiais , Fosfinas/química , Polietilenoglicóis/química , Polimerização , Ácidos Polimetacrílicos/química , Cimentos de Resina/química , Zircônio/química
5.
Dent Mater ; 30(5): 507-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24629734

RESUMO

OBJECTIVES: The degree and rate of photopolymerization in resin-based dental composites will significantly affect polymer network formation and resultant material properties that may determine their clinical success. This study investigates the mechanical properties, the generation of stress from polymerization, tooth cusp deflection and marginal integrity of experimental resin composites that contain different photoinitiators. METHODS: Experimental light-activated resin composites (60vol% particulate filled in 50/50mass% bis-GMA/TEGDMA) were formulated using a monoacylphosphine oxide (MAPO) photoinitiator and compared with a conventional camphoroquinone (CQ)-based system. Similar radiant exposure was used (18Jcm(-2)) for polymerization of each material although the curing protocol was varied (400mWcm(-2) for 45s, 1500mWcm(-2) for 12s and 3000mWcm(-2) for 6s). Degree and rate of polymerization was calculated in real-time by near infrared spectroscopy and the generation of stress throughout polymerization measured using a cantilever beam method. Flexural strength and modulus were acquired by three-point bend tests. Standardized cavities in extract pre-molar teeth were restored with each material, the total cuspal deflection measured and post-placement marginal integrity between the tooth and restoration recorded. RESULTS: Generally, MAPO- exhibited a significantly higher degree of conversion (72±0.8 to 82±0.5%) compared with CQ-based materials (39±0.7 to 65±1.6%) regardless of curing protocol (p<0.05) and MAPO-based materials exhibited less difference in conversion between curing protocols. CQ-based materials exhibited between ∼85 and 95% of the maximum rate of polymerization at <15% conversion, whereas MAPO-based RBCs did not approach the maximum rate until >50% conversion. Higher irradiance polymerization had a significant deleterious effect on the mechanical properties of CQ-based materials (p<0.05) whereas MAPO-based materials exhibited increased strength and modulus and were less affected by the curing method. Total cuspal deflection in restored extracted teeth was higher for CQ- compared with MAPO-based materials cured at the lowest irradiance curing protocol (12.9±4.0 and 8.3±1.5µm) and similar at 3000mWcm(-1) for 6s (10.1±3.5 and 9.0±1.5µm). A significant decrease in marginal integrity was observed for CQ-based RBCs cured at high irradiance for short exposure time compared with that of the MAPO-based RBC cured using a similar protocol (p=0.037). SIGNIFICANCE: Polymer network formation dictates the final properties of the set composite and the use MAPO photoinitiators may provide an effective restorative material that exhibits higher curing speeds, increased degree of conversion, strength and modulus without compromise in terms of polymerization stress and marginal integrity between tooth and restoration.


Assuntos
Resinas Compostas , Lâmpadas de Polimerização Dentária , Teste de Materiais , Polimerização
6.
J Dent Res ; 91(10): 961-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22879579

RESUMO

Light irradiation activates a range of cellular processes in a variety of cell types, including stem cells, and can promote tissue repair. This study investigated the effects of light-emitting diode (LED) exposure on dental pulp cells (DPCs). Dose response analysis at 20-second intervals up to 120 seconds demonstrated that a LED array emitting 653-nm red light stimulated significantly increased cell growth at 3 and 7 days post-irradiation with 40 (149 mJ/cm(2)) and 60 (224 mJ/cm(2)) seconds of radiant exposure. Double-dosing cells at days 1 and 4 of a 7-day culture period with 60-second (224 mJ/cm(2)) LED exposure significantly increased cell growth compared with a single dosing regime. BrdU analysis demonstrated significantly increased proliferation rates associated with significantly increased ATP, nitric oxide (NO), and mitochondrial metabolic activity. LED-stimulated NO levels were not reduced by inhibition of NO-synthase activity. Light exposure also rescued the inhibition of mitochondrial dysfunction and increased levels of in vitro mineralization compared with control. Media exchange experiments indicated that autocrine signaling was not likely responsible for red-light-induced DPC activity. In conclusion, data analysis indicated that 653-nm LED irradiation promoted DPC responses relevant to tissue repair, and this is likely mediated by increased mitochondrial activity.


Assuntos
Proliferação de Células/efeitos da radiação , Polpa Dentária/efeitos da radiação , Células Epiteliais/efeitos da radiação , Luz , Renovação Mitocondrial/efeitos da radiação , Trifosfato de Adenosina/biossíntese , Animais , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Relação Dose-Resposta à Radiação , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Mitocôndrias/efeitos da radiação , Óxido Nítrico/biossíntese , Cultura Primária de Células , Ratos , Semicondutores , Transdução de Sinais/efeitos da radiação , Calcificação de Dente/efeitos da radiação
7.
Dent Mater ; 26(11): 1106-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20692029

RESUMO

OBJECTIVES: The change in optical characteristics through the bulk of curing photopolymers is not fully understood. Photopolymerization processes are accompanied by photoinitiator absorption, density changes and volumetric shrinkage, which alter optical properties and affects curing efficiency through depth. METHODS: This investigation demonstrates the use of a novel low coherence interferometry technique for simultaneous measurement of optical (refractive index) and physical (shrinkage) properties throughout curing of photoactive monomers containing various concentrations of bisphenol-A-diglycidyl ether dimethacrylate and triethylene glycol dimethacrylate. RESULTS: Reliability of the interferometry technique was compared with an Abbé refractometer and showed a significant linear regression relationship (p<0.001; adjusted R(2)>0.99) for both uncured and cured resins. The extent and rate of refractive index change and magnitude of shrinkage strain was dependent upon monomer formulation. SIGNIFICANCE: The development of this interferometry technique provides a powerful non-invasive tool that will be useful for improving light transmission through photoactive resins and filled resin composites by precise control of optical properties through material bulk.


Assuntos
Resinas Compostas/química , Absorção , Bis-Fenol A-Glicidil Metacrilato/química , Bis-Fenol A-Glicidil Metacrilato/efeitos da radiação , Fenômenos Químicos , Resinas Compostas/efeitos da radiação , Humanos , Interferometria/instrumentação , Interferometria/métodos , Luz , Teste de Materiais , Processos Fotoquímicos , Fotoiniciadores Dentários/química , Fotoiniciadores Dentários/efeitos da radiação , Polietilenoglicóis/química , Polietilenoglicóis/efeitos da radiação , Polimerização , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/efeitos da radiação , Refratometria , Reprodutibilidade dos Testes , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...