Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398123

RESUMO

(1) Background: The sensitivity of head and neck squamous cell carcinoma (HNSCC) to ionizing radiation, among others, is determined by the number of cells with high clonogenic potential and stem-like features. These cellular characteristics are dynamically regulated in response to treatment and may lead to an enrichment of radioresistant cells with a cancer stem cell (CSC) phenotype. Epigenetic mechanisms, particularly DNA and histone methylation, are key regulators of gene-specific transcription and cellular plasticity. Therefore, we hypothesized that specific epigenetic targeting may prevent irradiation-induced plasticity and may sensitize HNSCC cells to radiotherapy. (2) Methods: We compared the DNA methylome and intracellular concentrations of tricarboxylic acid cycle metabolites in radioresistant FaDu and Cal33 cell lines with their parental controls, as well as aldehyde dehydrogenase (ALDH)-positive CSCs with negative controls. Moreover, we conducted a screen of a chemical library targeting enzymes involved in epigenetic regulation in combination with irradiation and analyzed the clonogenic potential, sphere formation, and DNA repair capacity to identify compounds with both radiosensitizing and CSC-targeting potential. (3) Results: We identified the histone demethylase inhibitor GSK-J1, which targets UTX (KDM6A) and JMJD3 (KDM6B), leading to increased H3K27 trimethylation, heterochromatin formation, and gene silencing. The clonogenic survival assay after siRNA-mediated knock-down of both genes radiosensitized Cal33 and SAS cell lines. Moreover, high KDM6A expression in tissue sections of patients with HNSCC was associated with improved locoregional control after primary (n = 137) and post-operative (n = 187) radio/chemotherapy. Conversely, high KDM6B expression was a prognostic factor for reduced overall survival. (4) Conclusions: Within this study, we investigated cellular and molecular mechanisms underlying irradiation-induced cellular plasticity, a key inducer of radioresistance, with a focus on epigenetic alterations. We identified UTX (KDM6A) as a putative prognostic and therapeutic target for HNSCC patients treated with radiotherapy.

2.
Cancers (Basel) ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275880

RESUMO

Head and neck squamous cell carcinoma (HNSCC) exhibits considerable variability in patient outcome. It has been reported that SOX2 plays a role in proliferation, tumor growth, drug resistance, and metastasis in a variety of cancer types. Additionally, SOX9 has been implicated in immune tolerance and treatment failures. SOX2 and SOX9 induce treatment failure by a molecular mechanism that has not yet been elucidated. This study explores the inverse association of SOX2/SOX9 and their distinct expression in tumors, influencing the tumor microenvironment and radiotherapy responses. Through public RNA sequencing data, human biopsy samples, and knockdown cellular models, we explored the effects of inverted SOX2 and SOX9 expression. We found that patients expressing SOX2LowSOX9High showed decreased survival compared to SOX2HighSOX9Low. A survival analysis of patients stratified by radiotherapy and human papillomavirus brings additional clinical relevance. We identified a gene set signature comprising newly discovered candidate genes resulting from inverted SOX2/SOX9 expression. Moreover, the TGF-ß pathway emerges as a significant predicted contributor to the overexpression of these candidate genes. In vitro findings reveal that silencing SOX2 enhances tumor radioresistance, while SOX9 silencing enhances radiosensitivity. These discoveries lay the groundwork for further studies on the therapeutic potential of transcription factors in optimizing HNSCC treatment.

3.
Cell Rep ; 38(8): 110422, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196495

RESUMO

Proton radiotherapy has been implemented into the standard-of-care for cancer patients within recent years. However, experimental studies investigating cellular and molecular mechanisms are lacking, and prognostic biomarkers are needed. Cancer stem cell (CSC)-related biomarkers, such as aldehyde dehydrogenase (ALDH), are known to influence cellular radiosensitivity through inactivation of reactive oxygen species, DNA damage repair, and cell death. In a previous study, we found that ionizing radiation itself enriches for ALDH-positive CSCs. In this study, we analyze CSC marker dynamics in prostate cancer, head and neck cancer, and glioblastoma cells upon proton beam irradiation. We find that proton irradiation has a higher potential to target CSCs through induction of complex DNA damages, lower rates of cellular senescence, and minor alteration in histone methylation pattern compared with conventional photon irradiation. Mathematical modeling indicates differences in plasticity rates among ALDH-positive CSCs and ALDH-negative cancer cells between the two irradiation types.


Assuntos
Carcinoma de Células Escamosas , Prótons , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Plasticidade Celular , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação , Radiação Ionizante
4.
Strahlenther Onkol ; 197(1): 63-73, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32970162

RESUMO

PURPOSE: To determine the effect of Cystus® tea (Naturprodukte Dr. Pandalis GmbH & Co. KG) as mouthwash compared to sage tea on oral mucositis in patients undergoing radio(chemo)therapy for head and neck cancer. METHODS: In this randomized, prospective phase III study, 60 head and neck cancer patients with primary or postoperative radio(chemo)therapy were included between 04/2012 and 06/2014. They received either sage or Cystus® tea for daily mouthwash under therapy. Mucositis was scored twice a week following the Radiation Therapy Oncology Group and the European Organization for Research and Treatment Cancer (RTOG/EORTC) scoring system. Dental parameters were also recorded. Statistical evaluation of the primary endpoint was performed using t­test and log rank test. RESULTS: Data from 57 patients could be evaluated. Patient characteristics showed no significant difference between the two groups (n = 27 sage; n = 30 Cystus®). A total of 55 patients received the prescribed dose (60-66 Gy postoperative; 70-76.8 Gy primary). Mucositis grade 3 was observed in 23 patients (n = 11 sage; n = 12 Cystus®) and occurred between day 16 and 50 after start of therapy. There was no significant difference between the two groups in latency (p = 0.75) and frequency (p = 0.85) of the occurrence of mucositis grade 3. The self-assessment of the oral mucosa and the tolerability of the tea also showed no significant differences. Occurrence of dental pathologies appeared to increase over time after radiotherapy. CONCLUSION: Cystus® and sage tea have a similar effect on the occurrence of radiation-induced mucositis regarding latency and incidence. Cystus® tea mouthwash solution is tolerated well and can be applied in addition to intensive oral care and hygiene along with the application of fluorides.


Assuntos
Cistaceae/química , Neoplasias de Cabeça e Pescoço/radioterapia , Antissépticos Bucais/uso terapêutico , Fitoterapia , Polifenóis/uso terapêutico , Lesões por Radiação/prevenção & controle , Estomatite/prevenção & controle , Chás de Ervas , Idoso , Idoso de 80 Anos ou mais , Quimiorradioterapia/efeitos adversos , Índice CPO , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/etiologia , Índice de Gravidade de Doença , Estomatite/tratamento farmacológico , Estomatite/etiologia , Fatores de Tempo
5.
PLoS One ; 12(5): e0177384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542229

RESUMO

The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.


Assuntos
DNA/genética , Hibridização de Ácido Nucleico/genética , Mutação Puntual/genética , Genes ras/genética , Humanos , Inclusão em Parafina/métodos , Patologia Molecular , Termodinâmica , Proteínas ras/genética
6.
Int J Nanomedicine ; 12: 459-472, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28138242

RESUMO

CD34+ hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs) differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon.


Assuntos
Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/citologia , Nanopartículas/química , Poliestirenos/química , Proteínas de Bactérias/química , Morte Celular , Proliferação de Células , Células Cultivadas , Proteínas de Fluorescência Verde/química , Células-Tronco Hematopoéticas/metabolismo , Humanos , Recém-Nascido , Cinética , Proteínas Luminescentes/química , Modelos Biológicos
7.
Mol Cell Proteomics ; 15(8): 2779-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27302888

RESUMO

In quantitative proteomics applications, the use of isobaric labels is a very popular concept as they allow for multiplexing, such that peptides from multiple biological samples are quantified simultaneously in one mass spectrometry experiment. Although this multiplexing allows that peptide intensities are affected by the same amount of instrument variability, systematic effects during sample preparation can also introduce a bias in the quantitation measurements. Therefore, normalization methods are required to remove this systematic error. At present, a few dedicated normalization methods for isobaric labeled data are at hand. Most of these normalization methods include a framework for statistical data analysis and rely on ANOVA or linear mixed models. However, for swift quality control of the samples or data visualization a simple normalization technique is sufficient. To this aim, we present a new and easy-to-use data-driven normalization method, named CONSTANd. The CONSTANd method employs constrained optimization and prior information about the labeling strategy to normalize the peptide intensities. Further, it allows maintaining the connection to any biological effect while reducing the systematic and technical errors. As a result, peptides can not only be compared directly within a multiplexed experiment, but are also comparable between other isobaric labeled datasets from multiple experimental designs that are normalized by the CONSTANd method, without the need to include a reference sample in every experimental setup. The latter property is especially useful when more than six, eight or ten (TMT/iTRAQ) biological samples are required to detect differential peptides with sufficient statistical power and to optimally make use of the multiplexing capacity of isobaric labels.


Assuntos
Fragmentos de Peptídeos/química , Proteômica/normas , Coloração e Rotulagem/métodos , Algoritmos , Interpretação Estatística de Dados , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...