Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 187(3): 1795-1811, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734276

RESUMO

Generalization of transcriptomics results can be achieved by comparison across experiments. This generalization is based on integration of interrelated transcriptomics studies into a compendium. Such a focus on the bigger picture enables both characterizations of the fate of an organism and distinction between generic and specific responses. Numerous methods for analyzing transcriptomics datasets exist. Yet, most of these methods focus on gene-wise dimension reduction to obtain marker genes and gene sets for, for example, pathway analysis. Relying only on isolated biological modules might result in missing important confounders and relevant contexts. We developed a method called Plant PhysioSpace, which enables researchers to compute experimental conditions across species and platforms without a priori reducing the reference information to specific gene sets. Plant PhysioSpace extracts physiologically relevant signatures from a reference dataset (i.e. a collection of public datasets) by integrating and transforming heterogeneous reference gene expression data into a set of physiology-specific patterns. New experimental data can be mapped to these patterns, resulting in similarity scores between the acquired data and the extracted compendium. Because of its robustness against platform bias and noise, Plant PhysioSpace can function as an inter-species or cross-platform similarity measure. We have demonstrated its success in translating stress responses between different species and platforms, including single-cell technologies. We have also implemented two R packages, one software and one data package, and a Shiny web application to facilitate access to our method and precomputed models.


Assuntos
Botânica/métodos , Perfilação da Expressão Gênica/instrumentação , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico , Software , Especificidade da Espécie , Transcriptoma
2.
PLoS Comput Biol ; 16(4): e1007803, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310964

RESUMO

Translational models directly relating drug response specific processes that can be observed in vitro to their in vivo role in cancer patients constitute a crucial part of the development of personalized medication. Unfortunately, current studies often focus on the optimization of isolated model characteristics instead of examining the overall modeling workflow and the interplay of the individual model components. Moreover, they are often limited to specific data sets only. Therefore, they are often confined by the irreproducibility of the results and the non-transferability of the approaches into other contexts. In this study, we present a thorough investigation of translational models and their ability to predict the drug responses of cancer patients originating from diverse data sets using the R-package FORESEE. By systematically scanning the modeling space for optimal combinations of different model settings, we can determine models of extremely high predictivity and work out a few modeling guidelines that promote simplicity. Yet, we identify noise within the data, sample size effects, and drug unspecificity as factors that deteriorate the models' robustness. Moreover, we show that cell line models of high accuracy do not necessarily excel in predicting drug response processes in patients. We therefore hope to motivate future research to consider in vivo aspects more carefully to ultimately generate deeper insights into applicable precision medicine.


Assuntos
Antineoplásicos , Biologia Computacional/métodos , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Transcriptoma/efeitos dos fármacos
3.
Bioinformatics ; 35(19): 3846-3848, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821320

RESUMO

SUMMARY: Translational models that utilize omics data generated in in vitro studies to predict the drug efficacy of anti-cancer compounds in patients are highly distinct, which complicates the benchmarking process for new computational approaches. In reaction to this, we introduce the uniFied translatiOnal dRug rESponsE prEdiction platform FORESEE, an open-source R-package. FORESEE not only provides a uniform data format for public cell line and patient datasets, but also establishes a standardized environment for drug response prediction pipelines, incorporating various state-of-the-art pre-processing methods, model training algorithms and validation techniques. The modular implementation of individual elements of the pipeline facilitates a straightforward development of combinatorial models, which can be used to re-evaluate and improve already existing pipelines as well as to develop new ones. AVAILABILITY AND IMPLEMENTATION: FORESEE is licensed under GNU General Public License v3.0 and available at https://github.com/JRC-COMBINE/FORESEE and https://doi.org/10.17605/OSF.IO/RF6QK, and provides vignettes for documentation and application both online and in the Supplementary Files 2 and 3. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Algoritmos , Desenho de Fármacos , Expressão Gênica
4.
PLoS Comput Biol ; 14(1): e1005890, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293508

RESUMO

Proteome balance is safeguarded by the proteostasis network (PN), an intricately regulated network of conserved processes that evolved to maintain native function of the diverse ensemble of protein species, ensuring cellular and organismal health. Proteostasis imbalances and collapse are implicated in a spectrum of human diseases, from neurodegeneration to cancer. The characteristics of PN disease alterations however have not been assessed in a systematic way. Since the chaperome is among the central components of the PN, we focused on the chaperome in our study by utilizing a curated functional ontology of the human chaperome that we connect in a high-confidence physical protein-protein interaction network. Challenged by the lack of a systems-level understanding of proteostasis alterations in the heterogeneous spectrum of human cancers, we assessed gene expression across more than 10,000 patient biopsies covering 22 solid cancers. We derived a novel customized Meta-PCA dimension reduction approach yielding M-scores as quantitative indicators of disease expression changes to condense the complexity of cancer transcriptomics datasets into quantitative functional network topographies. We confirm upregulation of the HSP90 family and also highlight HSP60s, Prefoldins, HSP100s, ER- and mitochondria-specific chaperones as pan-cancer enriched. Our analysis also reveals a surprisingly consistent strong downregulation of small heat shock proteins (sHSPs) and we stratify two cancer groups based on the preferential upregulation of ATP-dependent chaperones. Strikingly, our analyses highlight similarities between stem cell and cancer proteostasis, and diametrically opposed chaperome deregulation between cancers and neurodegenerative diseases. We developed a web-based Proteostasis Profiler tool (Pro2) enabling intuitive analysis and visual exploration of proteostasis disease alterations using gene expression data. Our study showcases a comprehensive profiling of chaperome shifts in human cancers and sets the stage for a systematic global analysis of PN alterations across the human diseasome towards novel hypotheses for therapeutic network re-adjustment in proteostasis disorders.


Assuntos
Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Proteostase , Trifosfato de Adenosina/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Chaperonas Moleculares/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/metabolismo , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...