Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Vis ; 22: 827-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27440999

RESUMO

PURPOSE: Usher syndrome accounts for about 50% of all hereditary deaf-blindness cases. The most severe form of this syndrome, Usher syndrome type I (USH1), is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. Six USH1 genes have been identified, MYO7A, CDH23, PCDH15, USH1C, SANS, and CIB2, encoding myosin VIIA, cadherin-23, protocadherin-15, harmonin, scaffold protein containing ankyrin repeats and a sterile alpha motif (SAM) domain, and calcium- and integrin-binding member 2, respectively. METHODS: In the present study, we recruited four Tunisian families with a diagnosis of USH1, together with healthy unrelated controls. Affected members underwent detailed audiologic and ocular examinations. We used the North African Deafness (NADf) chip to search for known North African mutations associated with USH. Then, we selected microsatellite markers covering USH1 known loci to genotype the DNA samples. Finally, we performed DNA sequencing of three known USH1 genes: MYO7A, PCDH15, and USH1C. RESULTS: Four biallelic mutations, all single base changes, were found in the MYO7A, USH1C, and PCDH15 genes. These mutations consist of a previously reported splicing defect c.470+1G>A in MYO7A, three novel variants, including two nonsense (p.Arg3X and p.Arg134X) in USH1C and PCDH15, respectively, and one frameshift (p.Lys615Asnfs*6) in MYO7A. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied families with USH1 with a variety of mutations, among which three were novel. These novel mutations will be included in the NADf mutation screening chip that will allow a higher diagnosis efficiency of this extremely genetically heterogeneous disease. Ultimately, efficient molecular diagnosis of USH in a patient's early childhood is of utmost importance, allowing better educational and therapeutic management.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Caderinas/genética , Códon sem Sentido , Mutação da Fase de Leitura , Miosinas/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Adolescente , Adulto , Proteínas Relacionadas a Caderinas , Proteínas de Ciclo Celular , Consanguinidade , Proteínas do Citoesqueleto , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Miosina VIIa , Linhagem , Análise de Sequência de DNA , Tunísia , Adulto Jovem
2.
Mol Vis ; 14: 1719-26, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18806881

RESUMO

PURPOSE: Chronic diseases affecting the inner ear and the retina cause severe impairments to our communication systems. In more than half of the cases, Usher syndrome (USH) is the origin of these double defects. Patients with USH type II (USH2) have retinitis pigmentosa (RP) that develops during puberty, moderate to severe hearing impairment with downsloping pure-tone audiogram, and normal vestibular function. Four loci and three genes are known for USH2. In this study, we proposed to localize the gene responsible for USH2 in a consanguineous family of Tunisian origin. METHODS: Affected members underwent detailed ocular and audiologic characterization. One Tunisian family with USH2 and 45 healthy controls unrelated to the family were recruited. Two affected and six unaffected family members attended our study. DNA samples of eight family members were genotyped with polymorphic markers. Two-point and multipoint LOD scores were calculated using Genehunter software v2.1. Sequencing was used to investigate candidate genes. RESULTS: Haplotype analysis showed no significant linkage to any known USH gene or locus. A genome-wide screen, using microsatellite markers, was performed, allowing the identification of three homozygous regions in chromosomes 2, 4, and 15. We further confirmed and refined these three regions using microsatellite and single-nucleotide polymorphisms. With recessive mode of inheritance, the highest multipoint LOD score of 1.765 was identified for the candidate regions on chromosomes 4 and 15. The chromosome 15 locus is large (55 Mb), underscoring the limited number of meioses in the consanguineous pedigree. Moreover, the linked, homozygous chromosome 15q alleles, unlike those of the chromosome 2 and 4 loci, are infrequent in the local population. Thus, the data strongly suggest that the novel locus for USH2 is likely to reside on 15q. CONCLUSIONS: Our data provide a basis for the localization and the identification of a novel gene implicated in USH2, most likely localized on 15q.


Assuntos
Síndromes de Usher/genética , Adolescente , Adulto , Idoso , Segregação de Cromossomos , Eletrorretinografia , Família , Feminino , Testes Genéticos , Genoma Humano/genética , Haplótipos , Perda Auditiva Neurossensorial/genética , Homozigoto , Humanos , Escore Lod , Masculino , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Linhagem , Tunísia , Síndromes de Usher/fisiopatologia , Campos Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...