Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3942, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729933

RESUMO

In clinical oncology, many diagnostic tasks rely on the identification of cells in histopathology images. While supervised machine learning techniques necessitate the need for labels, providing manual cell annotations is time-consuming. In this paper, we propose a self-supervised framework (enVironment-aware cOntrastive cell represenTation learning: VOLTA) for cell representation learning in histopathology images using a technique that accounts for the cell's mutual relationship with its environment. We subject our model to extensive experiments on data collected from multiple institutions comprising over 800,000 cells and six cancer types. To showcase the potential of our proposed framework, we apply VOLTA to ovarian and endometrial cancers and demonstrate that our cell representations can be utilized to identify the known histotypes of ovarian cancer and provide insights that link histopathology and molecular subtypes of endometrial cancer. Unlike supervised models, we provide a framework that can empower discoveries without any annotation data, even in situations where sample sizes are limited.


Assuntos
Neoplasias do Endométrio , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias do Endométrio/patologia , Neoplasias Ovarianas/patologia , Aprendizado de Máquina , Aprendizado de Máquina Supervisionado , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
2.
J Imaging ; 7(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-34460700

RESUMO

The reconstruction of computed tomography (CT) images is an active area of research. Following the rise of deep learning methods, many data-driven models have been proposed in recent years. In this work, we present the results of a data challenge that we organized, bringing together algorithm experts from different institutes to jointly work on quantitative evaluation of several data-driven methods on two large, public datasets during a ten day sprint. We focus on two applications of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods using standardized settings. As a general result, we observe that the deep learning-based methods are able to improve the reconstruction quality metrics in both CT applications while the top performing methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). We further discuss a number of other important criteria that should be taken into account when selecting a method, such as the availability of training data, the knowledge of the physical measurement model and the reconstruction speed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...