Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 184(3): 322-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26305294

RESUMO

Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 µm wide and spaced at 900 µm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.


Assuntos
Neoplasias Encefálicas/radioterapia , Nanotubos de Carbono , Animais , Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Dano ao DNA , Histonas/análise , Humanos , Masculino , Camundongos , Doses de Radiação , Radioterapia/instrumentação
2.
Med Phys ; 42(4): 1966-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832087

RESUMO

PURPOSE: Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). METHODS: The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. RESULTS: The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s(-1), a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s(-1)). The nano-FOD-determined lateral beam full-width half max value of 420 µm exceeded that measured using radiochromic film (320 µm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). CONCLUSIONS: This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Radiometria/instrumentação , Radioterapia , Terapia por Raios X , Animais , Calibragem , Desenho de Equipamento , Camundongos , Microscopia Eletrônica de Varredura , Nanopartículas , Imagens de Fantasmas , Radiometria/métodos , Radioterapia/instrumentação , Radioterapia/métodos , Terapia por Raios X/instrumentação , Terapia por Raios X/métodos , Raios X
3.
Med Phys ; 41(6): 061710, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24877805

RESUMO

PURPOSE: Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. METHODS: The microbeam dose distribution was generated by our CNT micro-CT scanner (100 µm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. RESULTS: Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300 µm (calculated value was 290 µm). Also, during the multiple beam simulation, a peak to valley dose ratio of ~10 was found when the phantom translation distance was roughly 4x the beam width. The first prototype CNT-based x-ray tube dedicated to the development of compact MRT technology development was proposed and planned based on the preliminary experimental results presented here and the previous corresponding Monte Carlo simulations. CONCLUSIONS: The authors have demonstrated the feasibility of creating microbeam dose distributions at a high dose rate using a proposed compact MRT system. The flexibility of CNT field emission x-ray sources could possibly bring compact and low cost MRT devices to the larger research community and assist in the translational research of this promising new approach to radiation therapy.


Assuntos
Radioterapia Guiada por Imagem/instrumentação , Radioterapia Guiada por Imagem/métodos , Radioterapia/instrumentação , Radioterapia/métodos , Microtomografia por Raio-X/instrumentação , Microtomografia por Raio-X/métodos , Dosimetria Fotográfica , Nanotubos de Carbono , Imagens de Fantasmas , Projetos Piloto , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...