Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(18)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139500

RESUMO

Importing proteins into the endoplasmic reticulum (ER) is essential for about 30% of the human proteome. It involves the targeting of precursor proteins to the ER and their insertion into or translocation across the ER membrane. Furthermore, it relies on signals in the precursor polypeptides and components, which read the signals and facilitate their targeting to a protein-conducting channel in the ER membrane, the Sec61 complex. Compared to the SRP- and TRC-dependent pathways, little is known about the SRP-independent/SND pathway. Our aim was to identify additional components and characterize the client spectrum of the human SND pathway. The established strategy of combining the depletion of the central hSnd2 component from HeLa cells with proteomic and differential protein abundance analysis was used. The SRP and TRC targeting pathways were analyzed in comparison. TMEM109 was characterized as hSnd3. Unlike SRP but similar to TRC, the SND clients are predominantly membrane proteins with N-terminal, central, or C-terminal targeting signals.


Assuntos
Proteômica , Partícula de Reconhecimento de Sinal , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Canais de Translocação SEC/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
2.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064074

RESUMO

The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.


Assuntos
Fenilbutiratos/farmacologia , Renina/metabolismo , Canais de Translocação SEC/genética , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Nefropatias/fisiopatologia , Chaperonas Moleculares/metabolismo , Mutação de Sentido Incorreto , Fenilbutiratos/metabolismo , Doenças Renais Policísticas , Transporte Proteico/genética , Renina/genética , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008565

RESUMO

Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.


Assuntos
Retículo Endoplasmático/metabolismo , Transporte Proteico/fisiologia , Proteínas/metabolismo , Animais , Citosol/metabolismo , Humanos , Sinais Direcionadores de Proteínas/fisiologia , Partícula de Reconhecimento de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...