Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104339

RESUMO

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Assuntos
Benchmarking , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Teóricos
3.
Methods Mol Biol ; 2439: 173-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35226322

RESUMO

Single-molecule microscopy is often used to observe and characterize the conformational dynamics of nucleic acids (NA). Due to the large variety of NA structures and the challenges specific to single-molecule observation techniques, the data recorded in such experiments must be processed via multiple statistical treatments to finally yield a reliable mechanistic view of the NA dynamics. In this chapter, we propose a comprehensive protocol to analyze single-molecule trajectories in the scope of single-molecule Förster resonance energy transfer (FRET) microscopy. The suggested protocol yields the conformational states common to all molecules in the investigated sample, together with the associated conformational transition kinetics. The given model resolves states that are indistinguishable by their observed FRET signals and is estimated with 95% confidence using error calculations on FRET states and transition rate constants. In the end, a step-by-step user guide is given to reproduce the protocol with the Multifunctional Analysis Software to Handle single-molecule FRET data (MASH-FRET).


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ácidos Nucleicos , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Nanotecnologia , Imagem Individual de Molécula/métodos
4.
Methods Mol Biol ; 2113: 1-16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006303

RESUMO

Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions. Further, the encapsulation allows to keep reaction partners (reactants and products) in close proximity and enables higher temperatures otherwise leading to desorption of the direct immobilized biomolecules.Here, we describe a detailed protocol for the encapsulation of a catalytically active RNA starting from surface passivation over RNA encapsulation to data evaluation of single-molecule FRET experiments in TIRF microscopy. We present an optimized procedure that preserves RNA functionality and applies to investigations of, e.g., large ribozymes and RNAs, where direct immobilization is structurally not possible.


Assuntos
Corantes Fluorescentes/química , RNA Catalítico/química , Imagem Individual de Molécula/métodos , Cápsulas , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Fosfolipídeos , Dobramento de RNA
5.
J Phys Chem B ; 122(23): 6134-6147, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29737844

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique to probe biomolecular structure and dynamics. A popular implementation of smFRET consists of recording fluorescence intensity time traces of surface-immobilized, chromophore-tagged molecules. This approach generates large and complex data sets, the analysis of which is to date not standardized. Here, we address a key challenge in smFRET data analysis: the generation of thermodynamic and kinetic models that describe with statistical rigor the behavior of FRET trajectories recorded from surface-tethered biomolecules in terms of the number of FRET states, the corresponding mean FRET values, and the kinetic rates at which they interconvert. For this purpose, we first perform Monte Carlo simulations to generate smFRET trajectories, in which a relevant space of experimental parameters is explored. Then, we provide an account on current strategies to achieve such model selection, as well as a quantitative assessment of their performances. Specifically, we evaluate the performance of each algorithm (change-point analysis, STaSI, HaMMy, vbFRET, and ebFRET) with respect to accuracy, reproducibility, and computing time, which yields a range of algorithm-specific referential benchmarks for various data qualities. Data simulation and analysis were performed with our MATLAB-based multifunctional analysis software for handling smFRET data (MASH-FRET).

6.
PLoS One ; 13(4): e0195277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29652886

RESUMO

Single-molecule microscopy has become a widely used technique in (bio)physics and (bio)chemistry. A popular implementation is single-molecule Förster Resonance Energy Transfer (smFRET), for which total internal reflection fluorescence microscopy is frequently combined with camera-based detection of surface-immobilized molecules. Camera-based smFRET experiments generate large and complex datasets and several methods for video processing and analysis have been reported. As these algorithms often address similar aspects in video analysis, there is a growing need for standardized comparison. Here, we present a Matlab-based software (MASH-FRET) that allows for the simulation of camera-based smFRET videos, yielding standardized data sets suitable for benchmarking video processing algorithms. The software permits to vary parameters that are relevant in cameras-based smFRET, such as video quality, and the properties of the system under study. Experimental noise is modeled taking into account photon statistics and camera noise. Finally, we survey how video test sets should be designed to evaluate currently available data analysis strategies in camera-based sm fluorescence experiments. We complement our study by pre-optimizing and evaluating spot detection algorithms using our simulated video test sets.


Assuntos
Algoritmos , Transferência Ressonante de Energia de Fluorescência , Software , Cadeias de Markov , Estatística como Assunto , Gravação em Vídeo
7.
Proc Natl Acad Sci U S A ; 112(11): 3403-8, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25737541

RESUMO

RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5'-exon-intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg(2+) and Ca(2+) on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M(2+) concentrations strongly promote interstrand association. Moreover, the presence of M(2+) leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M(2+) concentrations. Using NMR, we locate specific Mg(2+) binding pockets and quantify their affinity toward Mg(2+). Mg(2+) pulse experiments show that M(2+) exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M(2+) binding sites at near-physiological M(2+) concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M(2+) binding sites.


Assuntos
Cátions Bivalentes/farmacologia , Éxons/genética , Íntrons/genética , RNA Catalítico/química , RNA Catalítico/genética , Sequência de Bases , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Cinética , Magnésio/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...