Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(2): 100940, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34237302

RESUMO

The severe acute respiratory syndrome coronavirus 2 envelope protein (S2-E) is a conserved membrane protein that is important for coronavirus (CoV) assembly and budding. Here, we describe the recombinant expression and purification of S2-E in amphipol-class amphipathic polymer solutions, which solubilize and stabilize membrane proteins, but do not disrupt membranes. We found that amphipol delivery of S2-E to preformed planar bilayers results in spontaneous membrane integration and formation of viroporin cation channels. Amphipol delivery of the S2-E protein to human cells results in plasma membrane integration, followed by retrograde trafficking to the trans-Golgi network and accumulation in swollen perinuclear lysosomal-associated membrane protein 1-positive vesicles, likely lysosomes. CoV envelope proteins have previously been proposed to manipulate the luminal pH of the trans-Golgi network, which serves as an accumulation station for progeny CoV particles prior to cellular egress via lysosomes. Delivery of S2-E to cells will enable chemical biological approaches for future studies of severe acute respiratory syndrome coronavirus 2 pathogenesis and possibly even development of "Trojan horse" antiviral therapies. Finally, this work also establishes a paradigm for amphipol-mediated delivery of membrane proteins to cells.


Assuntos
Membrana Celular/efeitos dos fármacos , Proteínas do Envelope de Coronavírus/metabolismo , Polímeros/farmacologia , Propilaminas/farmacologia , Tensoativos/farmacologia , Rede trans-Golgi/metabolismo , Membrana Celular/metabolismo , Proteínas do Envelope de Coronavírus/genética , Células HeLa , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisossomos/metabolismo , Polímeros/química , Propilaminas/química , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tensoativos/química
2.
J Biol Chem ; 296: 100652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839158

RESUMO

Processing of the amyloid precursor protein (APP) via the amyloidogenic pathway is associated with the etiology of Alzheimer's disease. The cleavage of APP by ß-secretase to generate the transmembrane 99-residue C-terminal fragment (C99) and subsequent processing of C99 by γ-secretase to yield amyloid-ß (Aß) peptides are essential steps in this pathway. Biochemical evidence suggests that amyloidogenic processing of C99 occurs in cholesterol- and sphingolipid-enriched liquid-ordered phase membrane rafts. However, direct evidence that C99 preferentially associates with these rafts has remained elusive. Here, we tested this by quantifying the affinity of C99-GFP for raft domains in cell-derived giant plasma membrane vesicles (GPMVs). We found that C99 was essentially excluded from ordered domains in vesicles from HeLa cells, undifferentiated SH-SY5Y cells, or SH-SY5Y-derived neurons; instead, ∼90% of C99 partitioned into disordered domains. The strong association of C99 with disordered domains occurred independently of its cholesterol-binding activity or homodimerization, or of the presence of the familial Alzheimer disease Arctic mutation (APP E693G). Finally, through biochemical studies we confirmed previous results, which showed that C99 is processed in the plasma membrane by α-secretase, in addition to the well-known γ-secretase. These findings suggest that C99 itself lacks an intrinsic affinity for raft domains, implying that either i) amyloidogenic processing of the protein occurs in disordered regions of the membrane, ii) processing involves a marginal subpopulation of C99 found in rafts, or iii) as-yet-unidentified protein-protein interactions with C99 in living cells drive this protein into membrane rafts to promote its cleavage therein.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Membrana Celular/química , Células HeLa , Humanos , Mutação , Domínios Proteicos
3.
bioRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619482

RESUMO

SARS-CoV-2 envelope protein (S2-E) is a conserved membrane protein that is essential to coronavirus assembly and budding. Here, we describe the recombinant expression and purification of S2-E into amphipol-class amphipathic polymer solutions. The physical properties of amphipols underpin their ability to solubilize and stabilize membrane proteins without disrupting membranes. Amphipol delivery of S2-E to pre-formed planar bilayers results in spontaneous membrane integration and formation of viroporin ion channels. Amphipol delivery of the S2-E protein to human cells results in membrane integration followed by retrograde trafficking to a location adjacent to the endoplasmic reticulum-to-Golgi intermediate compartment (ERGIC) and the Golgi, which are the sites of coronavirus replication. Delivery of S2-E to cells enables both chemical biological approaches for future studies of SARS-CoV-2 pathogenesis and development of "Trojan Horse" anti-viral therapies. This work also establishes a paradigm for amphipol-mediated delivery of membrane proteins to cells.

4.
Protein Sci ; 28(7): 1177-1193, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30897251

RESUMO

The role of the amyloidogenic pathway in the etiology of Alzheimer's disease (AD), particularly the common sporadic late onset forms of the disease, is controversial. To some degree, this is a consequence of the failure of drug and therapeutic antibody trials based either on targeting the proteases in this pathway or its amyloid end products. Here, we explore the formidable complexity of the biochemistry and cell biology associated with this pathway. For example, we review evidence that the immediate precursor of amyloid-ß, the C99 domain of the amyloid precursor protein (APP), may itself be toxic. We also review important new results that appear to finally establish a direct genetic link between mutations in APP and the sporadic forms of AD. Based on the complexity of amyloidogenesis, it seems possible that a major contributor to the failure of related drug trials is that we have an incomplete understanding of this pathway and how it is linked to Alzheimer's pathogenesis. If so, this highlights a need for further characterization of this pathway, not its abandonment.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/genética , Animais , Humanos
5.
Sci Adv ; 4(3): eaar2631, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29532034

RESUMO

Mutations that induce loss of function (LOF) or dysfunction of the human KCNQ1 channel are responsible for susceptibility to a life-threatening heart rhythm disorder, the congenital long QT syndrome (LQTS). Hundreds of KCNQ1 mutations have been identified, but the molecular mechanisms responsible for impaired function are poorly understood. We investigated the impact of 51 KCNQ1 variants with mutations located within the voltage sensor domain (VSD), with an emphasis on elucidating effects on cell surface expression, protein folding, and structure. For each variant, the efficiency of trafficking to the plasma membrane, the impact of proteasome inhibition, and protein stability were assayed. The results of these experiments combined with channel functional data provided the basis for classifying each mutation into one of six mechanistic categories, highlighting heterogeneity in the mechanisms resulting in channel dysfunction or LOF. More than half of the KCNQ1 LOF mutations examined were seen to destabilize the structure of the VSD, generally accompanied by mistrafficking and degradation by the proteasome, an observation that underscores the growing appreciation that mutation-induced destabilization of membrane proteins may be a common human disease mechanism. Finally, we observed that five of the folding-defective LQTS mutant sites are located in the VSD S0 helix, where they interact with a number of other LOF mutation sites in other segments of the VSD. These observations reveal a critical role for the S0 helix as a central scaffold to help organize and stabilize the KCNQ1 VSD and, most likely, the corresponding domain of many other ion channels.


Assuntos
Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Mutação/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Canal de Potássio KCNQ1/metabolismo , Leupeptinas/farmacologia , Mutação com Perda de Função/genética , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Domínios Proteicos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteólise/efeitos dos fármacos
6.
Sci Adv ; 3(7): e1700220, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695207

RESUMO

Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas da Mielina/metabolismo , Membrana Celular/ultraestrutura , Doença de Charcot-Marie-Tooth , Cisteína/química , Cisteína/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Lipossomos/química , Lipossomos/ultraestrutura , Mutação , Proteínas da Mielina/química , Proteínas da Mielina/genética , Proteínas Recombinantes
7.
Elife ; 52016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929375

RESUMO

Integrins are transmembrane receptors composed of α and ß subunits. Although most integrins contain ß1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbß3. Its inactive conformation is characterized by the association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted ß3 TM/CT that leads to activation when disrupted. We show significant structural differences between ß1 and ß3 TM/CT in bicelles. Moreover, the 'snorkeling' lysine at the TM/CT interface of ß subunits, previously proposed to regulate αIIbß3 activation by ion pairing with nearby lipids, plays opposite roles in ß1 and ß3 integrin function and in neither case is responsible for TM tilt. A range of affinities from almost no interaction to the relatively high avidity that characterizes αIIbß3 is seen between various α subunits and ß1 TM/CTs. The αIIbß3-based canonical model for the roles of the TM/CT in integrin activation and function clearly does not extend to all mammalian integrins.


Assuntos
Células Epiteliais/fisiologia , Integrina alfa1/metabolismo , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Multimerização Proteica , Substituição de Aminoácidos , Adesão Celular , Células Cultivadas , Células Epiteliais/química , Humanos , Integrina alfa1/química , Integrina beta1/química , Integrina beta1/genética , Integrina beta3/química , Integrina beta3/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/química , Ligação Proteica
8.
Biochemistry ; 53(27): 4320-2, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24960539

RESUMO

Caveolin-3 (Cav3) is an unconventional membrane protein that serves as a critical scaffolding hub in caveolae and is genetically linked to various muscle disorders. In this work, we report the expression, purification, and characterization of full-length human Cav3. To mimic the palmitoylation of endogenous Cav3, we developed a generally applicable approach to covalently attached thioalkyl chains at natively modified cysteine residues. Nuclear magnetic resonance measurements indicate that lipidation exerts only a modest and local effect on the Cav3 structure, with little impact on the structures of the N-terminal domain, the scaffolding domain, and the extreme C-terminus.


Assuntos
Caveolina 3/química , Caveolina 3/genética , Humanos , Lipoilação , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Mol Cell Biol ; 32(20): 4080-91, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22869523

RESUMO

Loss of ß1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal ß1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal ß1 tail using nuclear magnetic resonance (NMR). Mice carrying alanine mutations have moderate renal collecting-system developmental abnormalities relative to ß1-null mice. Phenylalanine mutations did not affect renal collecting-system development but increased susceptibility to renal injury. NMR spectra in bicelles showed the distal ß1 tail is disordered and does not interact with the model membrane surface. Alanine or phenylalanine mutations did not alter ß1 structure or interactions between α and ß1 subunit transmembrane/cytoplasmic domains; however, they did decrease talin and kindlin binding. Thus, these studies highlight the fact that the functional roles of the NPXY motifs are organ dependent. Moreover, the ß1 cytoplasmic tail, in the context of the adjacent transmembrane domain in bicelles, is significantly different from the more ordered, membrane-associated ß3 integrin tail. Finally, tyrosine mutations of ß1 NPXY motifs induce phenotypes by disrupting their interactions with critical integrin binding proteins like talins and kindlins.


Assuntos
Integrina beta1/metabolismo , Túbulos Renais Coletores/crescimento & desenvolvimento , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Citosol/metabolismo , Humanos , Integrina beta1/genética , Integrina beta3/química , Integrina beta3/metabolismo , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/química , Ligação Proteica , Conformação Proteica , Talina/química , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
10.
Biochemistry ; 51(25): 5153-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22681044

RESUMO

Alzheimer's disease is a fatal neurological disorder that is a leading cause of death, with its prevalence increasing as the average life expectancy increases worldwide. There is an urgent need to develop new therapeutics for this disease. A newly described protein, the γ-secretase activating protein (GSAP), has been proposed to promote elevated levels of amyloid-ß production, an activity that seems to be inhibited using the well-establish cancer drug, imatinib (Gleevec). Despite much interest in this protein, there has been little biochemical characterization of GSAP. Here we report protocols for the recombinant bacterial expression and purification of this potentially important protein. GSAP is expressed in inclusion bodies, which can be solubilized using harsh detergents or urea; however, traditional methods of refolding were not successful in generating soluble forms of the protein that contained well-ordered and homogeneous tertiary structure. However, GSAP could be solubilized in detergent micelle solutions, where it was seen to be largely α-helical but to adopt only heterogeneous tertiary structure. Under these same conditions, GSAP did not associate with either imatinib or the 99-residue transmembrane C-terminal domain of the amyloid precursor protein. These results highlight the challenges that will be faced in attempts to manipulate and characterize this protein.


Assuntos
Proteínas/química , Proteínas/isolamento & purificação , Escherichia coli/química , Escherichia coli/genética , Vetores Genéticos/síntese química , Humanos , Corpos de Inclusão/química , Corpos de Inclusão/genética , Plasmídeos/síntese química , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação
11.
Science ; 336(6085): 1168-71, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22654059

RESUMO

C99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by γ-secretase to release the amyloid-ß polypeptides, which are associated with Alzheimer's disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded "N-helix" followed by a short "N-loop" connecting to the transmembrane domain (TMD). The TMD is a flexibly curved α helix, making it well suited for processive cleavage by γ-secretase. Titration of C99 reveals a binding site for cholesterol, providing mechanistic insight into how cholesterol promotes amyloidogenesis. Membrane-buried GXXXG motifs (G, Gly; X, any amino acid), which have an established role in oligomerization, were also shown to play a key role in cholesterol binding. The structure and cholesterol binding properties of C99 may aid in the design of Alzheimer's therapeutics.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Micelas , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Structure ; 19(8): 1160-9, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21827951

RESUMO

Mutations in peripheral myelin protein 22 (PMP22) can result in the common peripheral neuropathy Charcot-Marie-Tooth disease (CMTD). The Leu16Pro mutation in PMP22 results in misassembly of the protein, which causes the Trembler-J (TrJ) disease phenotype. Here we elucidate the structural defects present in a partially folded state of TrJ PMP22 that are decisive in promoting CMTD-causing misfolding. In this state, transmembrane helices 2-4 (TM2-4) form a molten globular bundle, while transmembrane helix 1 (TM1) is dissociated from this bundle. The TrJ mutation was seen to profoundly disrupt the TM1 helix, resulting in increased backbone dynamics and changes in the tertiary interactions of TM1 with the PMP22 TM2-4 core in the folded state. Consequently, TM1 undergoes enhanced dissociation from the other transmembrane segments in TrJ PMP22, becoming available for recognition and sequestration by protein-folding quality control, which leads to loss of function and toxic accumulation of aggregates that result in CMTD.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas da Mielina/química , Proteínas da Mielina/genética , Fenótipo , Sequência de Aminoácidos , Dicroísmo Circular , Retículo Endoplasmático/química , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteólise
13.
Biochemistry ; 49(26): 5405-7, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20540494

RESUMO

It is shown that Methyl Red can be used as an indicator dye that changes color in Escherichia coli culture as a result of time- and cell density-dependent bleaching by azoreductase produced by the bacteria. For cell cultures that are being used to express a recombinant protein, this phenomenon can be exploited to provide a simple visual cue that cell cultures have reached an appropriate growth phase for addition of an agent to induce protein expression, such as isopropyl thiogalactoside.


Assuntos
Técnicas Bacteriológicas/métodos , Clonagem Molecular/métodos , Proteínas Recombinantes/biossíntese , Compostos Azo , Corantes , Escherichia coli/citologia , Escherichia coli/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Indicadores e Reagentes , Isopropiltiogalactosídeo/farmacologia , NADH NADPH Oxirredutases/metabolismo , Nitrorredutases
14.
Science ; 324(5935): 1726-9, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19556511

RESUMO

Escherichia coli diacylglycerol kinase (DAGK) represents a family of integral membrane enzymes that is unrelated to all other phosphotransferases. We have determined the three-dimensional structure of the DAGK homotrimer with the use of solution nuclear magnetic resonance. The third transmembrane helix from each subunit is domain-swapped with the first and second transmembrane segments from an adjacent subunit. Each of DAGK's three active sites resembles a portico. The cornice of the portico appears to be the determinant of DAGK's lipid substrate specificity and overhangs the site of phosphoryl transfer near the water-membrane interface. Mutations to cysteine that caused severe misfolding were located in or near the active site, indicating a high degree of overlap between sites responsible for folding and for catalysis.


Assuntos
Diacilglicerol Quinase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Membrana Celular/enzimologia , Diacilglicerol Quinase/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
Biochemistry ; 47(36): 9428-46, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702528

RESUMO

The amyloid precursor protein (APP) is subject to alternative pathways of proteolytic processing, leading either to production of the amyloid-beta (Abeta) peptides or to non-amyloidogenic fragments. Here, we report the first structural study of C99, the 99-residue transmembrane C-terminal domain of APP liberated by beta-secretase cleavage. We also show that cholesterol, an agent that promotes the amyloidogenic pathway, specifically binds to this protein. C99 was purified into model membranes where it was observed to homodimerize. NMR data show that the transmembrane domain of C99 is an alpha-helix that is flanked on both sides by mostly disordered extramembrane domains, with two exceptions. First, there is a short extracellular surface-associated helix located just after the site of alpha-secretase cleavage that helps to organize the connecting loop to the transmembrane domain, which is known to be essential for Abeta production. Second, there is a surface-associated helix located at the cytosolic C-terminus, adjacent to the YENPTY motif that plays critical roles in APP trafficking and protein-protein interactions. Cholesterol was seen to participate in saturable interactions with C99 that are centered at the critical loop connecting the extracellular helix to the transmembrane domain. Binding of cholesterol to C99 and, most likely, to APP may be critical for the trafficking of these proteins to cholesterol-rich membrane domains, which leads to cleavage by beta- and gamma-secretase and resulting amyloid-beta production. It is proposed that APP may serve as a cellular cholesterol sensor that is linked to mechanisms for suppressing cellular cholesterol uptake.


Assuntos
Precursor de Proteína beta-Amiloide/química , Colesterol/química , Membranas Artificiais , Modelos Químicos , Peptídeos/química , Motivos de Aminoácidos/fisiologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Dimerização , Humanos , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia
16.
Biochemistry ; 46(39): 11185-95, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17824619

RESUMO

Gene duplications, deletions, and point mutations in peripheral myelin protein 22 (PMP22) are linked to several inherited peripheral neuropathies. However, the structural and biochemical properties of this very hydrophobic putative tetraspan integral membrane protein have received little attention, in part because of difficulties in obtaining milligram quantities of wild type and disease-linked mutant forms of the protein. In this study a fusion protein was constructed consisting of a fragment of lambda repressor, a decahistidine tag, an intervening TEV protease cleavage site, a Strep tag, and the human PMP22 sequence. This fusion protein was expressed in Escherichia coli at a level of 10-20 mg/L of protein. Following TEV cleavage of the fusion partner, PMP22 was purified and its structural properties were examined in several different types of detergent micelles using cross-linking, near and far-UV circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy. PMP22 is highly helical and, in certain detergents, shows evidence of stable tertiary structure. The protein exhibits a strong tendency to dimerize. The 1H-15N TROSY NMR spectrum is well dispersed and contains signals from all regions of the protein. It appears that detergent-solubilized PMP22 is amenable to detailed structural characterization via crystallography or NMR. This work sets the stage for more detailed studies of the structure, folding, and misfolding of wild type and disease-linked mutants in order to unravel the molecular defects underlying peripheral neuropathies.


Assuntos
Proteínas da Mielina/química , Proteínas da Mielina/isolamento & purificação , Doenças do Sistema Nervoso Periférico/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Dimerização , Eletroforese em Gel de Poliacrilamida , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Dados de Sequência Molecular , Proteínas da Mielina/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Biochemistry ; 45(33): 10072-84, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16906765

RESUMO

Escherichia coli diacylglycerol kinase (DAGK) is a homotrimeric helical integral membrane protein in which a number of single-site mutations to cysteine are known to promote misfolding. Here, effects of other amino acid replacements have been explored using a folding assay based on the dilution of acidic urea/DAGK stock solutions into detergent/lipid mixed micelles. DAGK with an I110P or I110R mutation in the third transmembrane helix could not be purified because its expression was toxic to the E. coli host, most likely because of severe folding defects. Other mutations at Ile110 enhanced irreversible misfolding to varying degrees that generally correlated both with the polarity of the inserted amino acid and with the degree of protein destabilization. However, the I110W mutant was an exception in that it was highly misfolding prone while at the same time being more stable than the wild-type protein. This contrasts with I110Y, which also exhibited enhanced stability but folded with an efficiency similar to that of the wild type. For most mutants, the critical step leading to irreversible misfolding occurred for monomeric DAGK prior to trimerization and independent of association with mixed micelles. Misfolding of DAGK evidently involves the formation of incorrect monomer tertiary structure. Mutations appear to enhance misfolding by disfavoring the formation of correct structure rather than by directly stabilizing the misfolded state. Finally, when urea-solubilized DAGK was diluted into detergent/lipid-free buffer, it retained a significant degree of folding competency over a period of minutes. This property may be relevant to membrane protein folding in cells under conditions where the usual machinery associated with membrane integration is saturated, dysregulated, or dysfunctional.


Assuntos
Diacilglicerol Quinase/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Dobramento de Proteína , Detergentes/química , Diacilglicerol Quinase/metabolismo , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Cinética , Proteínas de Membrana/metabolismo , Mutação , Conformação Proteica , Termodinâmica , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...