Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(19): 27017-27027, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674570

RESUMO

An entirely reflective slit spatial filter is proposed to provide spatial filtering, gain isolation, and ASE mitigation for high-energy laser systems. The traditional circular pinhole is replaced by two orthogonal slits, which lowers the intensity at the spatial filter plane by up to two orders of magnitude, and by using reflective optics we reduce spatial dispersion and eliminate B-integral effects. A ray trace model of the spatial filter shows excellent transmitted wavefront, but also indicates aberrations at the foci from using cylindrical optics at 45°. It is expected that the use of off-axis parabolic mirrors would mitigate this issue but comes at the cost of more complicated, expensive optics and more complex alignment. We created a numerical model based on Fourier optics to explain this effect and guide design requirements to mitigate it. High-quality imaging and filtering capabilities are demonstrated experimentally.

2.
Appl Opt ; 50(4): 554-61, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21283247

RESUMO

In order to achieve the highest intensities possible with the short-pulse Advanced Radiographic Capability beamline at the National Ignition Facility (NIF), it will be necessary to phase the individual ARC apertures. This is made especially challenging because the design of ARC results in two laser beams with different dispersions sharing the same NIF aperture. The extent to which two beams with different dispersions can be phased with each other has been an open question. This paper presents results of an analysis showing that the different dispersion values that will be encountered by the shared-aperture beams will not preclude the phasing of the two beams. We also highlight a situation in which dispersion mismatch will prevent good phasing between apertures, and discuss the limits to which higher-order dispersion values may differ before the beams begin to dephase.

3.
Opt Lett ; 29(21): 2494-6, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15584272

RESUMO

Dynamic wave-front correction is applied before each shot on a 100-TW, 30-J/300-fs high-power laser facility by use of an adaptive-optics system. This system allows us to increase the repetition rate of high-energy lasers while maintaining excellent and constant beam focusability with a Strehl ratio of >0.75 despite the amplifiers' not being in thermal equilibrium. The best results in terms of the highest Strehl ratio and intensities are obtained when locking the system on wave-front sensing after pulse recompression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...