Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Drug Resist ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905152

RESUMO

Background: The increased incidence of infections due to multidrug-resistant Gram-negative bacteria has led to the renewed interest in the use of 'forgotten' antibiotics such as colistin. In this work, we studied the chromosomal colistin resistance mechanisms among laboratory-induced colistin-resistant Escherichia coli isolates. Methods: Three colistin-susceptible (ColS) clinical isolates of E. coli assigning to ST131, ST405, and ST361 were exposed to successively increasing concentrations of colistin. The nucleotide sequences of pmrA, pmrB, pmrD, phoP, phoQ, and mgrB genes were determined. The fitness burden associated with colistin resistance acquisition was determined by measuring the in vitro growth rate. Results: Colistin resistance induction resulted in 16-64 times increase in colistin MICs in mutants (n = 8) compared with parental isolates. Analysis of chromosomal genes in colistin-resistant mutants compared with those of ColS ancestors revealed genetic alterations confined to PmrAB two-component system and included PmrA G53R/R81S/L105P and PmrB E121K/E121A/A159P/A159V/G302E changes. The PmrB E121 was found as a critical position for colistin resistance development being altered in three mutants with different ancestors. The acquired colistin-resistance phenotype was stable following 10 consecutive passages in the absence of selective pressure of colistin and it did not alter the susceptibility of mutants to other antimicrobial agents. All mutants exhibited growth rates similar to their respective ColS ancestors, except for one isolate, which revealed a significant growth defect. Conclusion: Our results revealed that colistin resistance in E. coli was more related to PmrAB alterations, which did not impose a fitness cost in most cases.

2.
Iran J Microbiol ; 15(5): 609-615, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37941881

RESUMO

Background and Objectives: Klebsiella pneumoniae is increasingly developing resistance to last-resort antibiotics such as carbapenems. This study aimed to investigate the dissemination of common carbapenemase encoding genes among 48 clinical isolates of carbapenem-resistant Klebsiella pneumoniae (CRKP). Materials and Methods: Antimicrobial susceptibility testing was performed by broth dilution and disc diffusion methods. The phenotypic evaluation of carbapenemase production was performed by using Modified Carbapenem Inactivation Method. Presence of carbapenemase encoding genes blaKPC, blaNDM, blaOXA-48-like , blaIMP, and blaVIM was screened by PCR. Results: Overall, carbapenemases were produced in all CRKP isolates. The blaOXA-48-like and blaNDM were the most prevalent genes detected among all and 66.6% (n=32) of CRKP isolates respectively. The blaVIM was detected in only one isolate co-harboring NDM and OXA-48-like carbapenemases. The blaKPC and blaIMP genes were not identified in any of the isolates. While tigecycline was the most active agent against CRKP isolates with low resistance rate (4.1%), high rate of resistance was observed to colistin (66.6%), amikacin (79%) and most of other tested antimicrobials. Conclusion: Our results revealed predominant prevalence of OXA-48-like and NDM carbapenemases among CRKP clinical isolates. High rate of resistance to last-resort agents such as colistin among CRKP isolates is a source of great concern.

3.
BMC Microbiol ; 23(1): 49, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36850019

RESUMO

BACKGROUND: The emergence of carbapenem-resistant Enterobacterales (CRE) continues to threaten public health due to limited therapeutic options. In the current study the incidence of carbapenem resistance among the 104 clinical isolates of Escherichia coli and the genomic features of carbapenem resistant isolates were investigated. METHODS: The susceptibility to imipenem, tigecycline and colistin was tested by broth dilution method. Susceptibility to other classes of antimicrobials was examined by disk diffusion test. The presence of blaOXA-48, blaKPC, blaNDM, and blaVIM carbapenemase genes was examined by PCR. Molecular characteristics of carbapenem resistant isolates were further investigated by whole-genome sequencing (WGS) using Illumina and Nanopore platforms. RESULTS: Four isolates (3.8%) revealed imipenem MIC of ≥32 mg/L and positive results for modified carbapenem inactivation method and categorized as carbapenem resistant E. coli (CREC). Colistin, nitrofurantoin, fosfomycin, and tigecycline were the most active agents against all isolates (total susceptibility rate of 99, 99, 96 and 95.2% respectively) with the last three compounds being found as the most active antimicrobials for carbapenem resistant isolates (susceptibility rate of 100%). According to Multilocus Sequence Type (MLST) analysis the 4 CREC isolates belonged to ST167 (n = 2), ST361 (n = 1) and ST648 (n = 1). NDM was detected in all CREC isolates (NDM-1 (n = 1) and NMD-5 (n = 3)) among which one isolate co-harbored NDM-5 and OXA-181 carbapenemases. WGS further detected blaCTX-M-15, blaCMY-145, blaCMY-42 and blaTEM-1 (with different frequencies) among CREC isolates. Co-occurrence of NDM-type carbapenemase and 16S rRNA methyltransferase RmtB and RmtC was found in two isolates belonging to ST167 and ST648. A colistin-carbapenem resistant isolate which was mcr-negative, revealed various amino acid substitutions in PmrB, PmrD and PhoPQ proteins. CONCLUSION: About 1.9% of E. coli isolates studied here were resistant to imipenem, colistin and/or amikacin which raises the concern about the outbreaks of difficult-to-treat infection by these emerging superbugs in the future.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Proteínas de Escherichia coli , Escherichia coli/genética , Irã (Geográfico) , Colistina/farmacologia , Tipagem de Sequências Multilocus , RNA Ribossômico 16S , Tigeciclina , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Imipenem
4.
J Glob Antimicrob Resist ; 31: 32-37, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35933109

RESUMO

OBJECTIVES: The increase in multidrug-resistant bacteria has reached an alarming rate globally, making it necessary to understand the underlying mechanisms mediating resistance in order to discover new therapeutics. Tigecycline (TGC) is a last-resort antimicrobial agent for the treatment of serious infections caused by extensively drug-resistant Enterobacteriaceae. METHODS: The TGC-resistant Escherichia coli mutants were obtained by exposing three different TGC-susceptible isolates belonging to ST131 (n = 2) and ST405 (n = 1) to increasing concentrations of TGC. The genetic alterations associated with reduced susceptibility to TGC were identified using whole genome sequencing. The fitness cost of TGC resistance acquisition, as well as incidence of cross-resistance, was also investigated. RESULTS: The TGC minimum inhibitory concentrations (MICs) of in vitro selected mutants were elevated 8 to 32 times compared with ancestral strains. Inactivating mutations (frameshift and nonsense) or amino acid substitutions were identified in genes encoding proteins with diverse functions, including AcrAB efflux pump or its regulators (lon and marR), Lipopolysaccharides (LPS) inner core biosynthesis enzymes (waaQ and eptB), ribosomal S9 protein (rpsI), and RNA polymerase ß subunit. In most cases (but not all), acquisition of TGC resistance was associated with a fitness cost. While TGC resistance development was associated with cross-resistance to other members of the tetracycline family and chloramphenicol, hypersensitivity to nitrofurantoin was identified among heptose III-less LPS mutants. CONCLUSION: TGC resistance among the studied mutants was found to be multifactorial with extrusion by efflux transports being the most common mechanism. The LPS inner core biosynthesis pathway, as well as ribosomal S9 protein, could be additional targets for TGC resistance.


Assuntos
Escherichia coli , Lipopolissacarídeos , Tigeciclina/farmacologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Genômica
5.
Int J Environ Health Res ; 32(6): 1382-1392, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33615919

RESUMO

This study characterized quinolone (Q) resistance determinants in a series of Klebsiella pneumoniae (n = 26) and Escherichia coli (n = 19) isolates of human and animal origin. The presence of plasmid-mediated quinolone resistance (PMQR) and carabpenemase genes was examined by PCR. The quinolone resistance-determining regions (QRDRs) of gyrA and parC genes were sequenced. Thirty-three isolates had ciprofloxacin MIC≥8 mg/l. About 34.6% and 10.5% of K. pneumoniae and E. coli isolates were ESBL producers respectively. The PMQR genes were detected in 77% (n = 35) of isolates. The oqxAB was the most prevalent PMQR gene being identified in all K. pneumoniae isolates, followed by aac(6')-Ib-cr (34.6%), qnrS (23%) and qnrB (7.7%). The most frequently detected gene among E. coli isolates was qnrS (36.8%) followed by aac(6')-Ib-cr (10.5%) and qepA (5.2%). All Q resistant isolates harbored amino acid substitutions in both GyrA and ParC QRDRs. High prevalence of PMQR genes among food-producing animal isolates is an issue of great concern.


Assuntos
Infecções por Escherichia coli , Quinolonas , Animais , Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana/genética , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Quinolonas/farmacologia
6.
Iran J Microbiol ; 13(4): 442-448, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34557271

RESUMO

BACKGROUND AND OBJECTIVES: Ceftaroline (CPT) is a novel cephalosporin with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Despite its recent introduction, CPT resistance in MRSA has been described worldwide. We aimed in the current study to evaluate the in vitro activity of CPT against 91 clinical MRSA and 3 MSSA isolates. MATERIALS AND METHODS: Susceptibility of isolates to CPT was tested using E-test and disk diffusion (DD) method. The nucleotide sequence of the mecA gene and molecular types of isolates with reduced susceptibility to CPT were further studied to identify resistance conferring mutations in PBP2a and the genetic relatedness of the isolates respectively. RESULTS: Overall, 92.5% of isolates were found to be CPT susceptible (MICs≤1mg/l) and 7 MRSA isolates were characterized with MIC=2mg/l and categorized as susceptible dose dependent. Compared to E-test, DD revealed a categorical agreement rate of 93.6% and the obtained rates for minor, major /very major error were found to be 6.3% and 0% respectively. The MRSA isolates with increased CPT MICs (n=7), belonged to spa types t030 (n=6) and t13927 (n=1) and all carried N146K substitution in PBP2a allosteric domain, except for one isolate which harbored a wild-type PBP2a. CONCLUSION: While resistance to CPT was not detected we found increased CPT MICs in 7.69% of MRSA isolates. Reduced susceptibility to CPT in the absence of mecA mutations is indicative of contribution of secondary chromosomal mutations in resistance development.

7.
Front Microbiol ; 12: 702006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421858

RESUMO

Emergence of extensively drug-resistant isolates of Klebsiella pneumoniae has prompted increased reliance on the last-resort antibiotics such as tigecycline (TGC) for treating infections caused by these pathogens. Consumption of human antibiotics in the food production industry has been found to contribute to the current antibiotic resistance crisis. In the current study, we aimed to investigate the mechanisms of TGC resistance among 18 TGC-non-susceptible (resistant or intermediate) K. pneumoniae (TGC-NSKP) isolates obtained from human (n = 5), food animals (n = 7), and in vitro selection experiment (n = 6). Isolates were genotyped by multilocus sequence typing (MLST). ramR, acrR, rpsJ, tetA, and mgrB (for colistin resistance) genes were sequenced. The presence of tetX, tetX1, and carbapenemase genes was examined by PCR. Susceptibility to different classes of antibiotics was evaluated by disc diffusion and broth macrodilution methods. The expression level of acrB was quantified by RT-qPCR assay. The 12 TGC-NSKP isolates [minimum inhibitory concentrations (MICs) = 4-32 mg/l] belonged to 10 distinct sequence types including ST37 (n = 2), ST11, ST15, ST45, ST1326 (animal isolates); ST147 (n = 2, human and animal isolates); and ST16, ST377, ST893, and ST2935 (human isolates). Co-resistance to TGC and colistin was identified among 57 and 40% of animal and human isolates, respectively. All human TGC-NSKP isolates carried carbapenemase genes (bla OXA - 48, bla NDM - 1, and bla NDM - 5). tetX/X1 genes were not detected in any isolates. About 83% of TGC-NSKP isolates (n = 15) carried ramR and/or acrR alterations including missense/nonsense mutations (A19V, L44Q, I141T, G180D, A28T, R114L, T119S, Y59stop, and Q122stop), insertions (positions +205 and +343), or deletions (position +205) for ramR, and R90G substitution or frameshift mutations for acrR. In one isolate ramR amplicon was not detected using all primers used in this study. Among seven colistin-resistant isolates, five harbored inactivated/mutated MgrB due to premature termination by nonsense mutations, insertion of IS elements, and frameshift mutations. All isolates revealed wild-type RpsJ and TetA (if present). Increased expression of acrB gene was detected among all resistant isolates, with the in vitro selected mutants showing the highest values. A combination of RamR and AcrR alterations was involved in TGC non-susceptibility in the majority of studied isolates.

8.
BMC Infect Dis ; 21(1): 709, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315422

RESUMO

BACKGROUND: The current emergence of multi-drug resistance among nosocomial pathogens has led to increased use of last-resort agents including Tigecycline (TGC). Availability of reliable methods for testing TGC susceptibility is crucial to accurately predict clinical outcomes. We evaluated the influence of different methodologies and type of media on TGC susceptibility of different gram-negative bacteria of clinical origin. METHODS: The TGC susceptibility of 84 clinical isolates of Klebsiella pneumoniae (n = 29), Escherichia coli (n = 30), and Acinetobacter baumannii (n = 25) was tested by broth microdilution (BMD), Etest, agar dilution (AD) and disk diffusion (DD) methods using Mueller Hinton agar from Difco and Mueller Hinton broth (MHB) from two different manufacturers (Difco and Condalab). FDA TGC susceptibility breakpoints issued for Enterobacteriaceae were used for interpretation of the results. RESULTS: MICs determined by BMD using MHB from two suppliers showed a good correlation with overall essential agreement (EA) and categorical agreement (CA) being 100% and 95% respectively. However, a twofold rise in BMD-Condalab MICs which was detected in 50% of the isolates, resulted in changes in susceptibility categories of few isolates with MICs close to susceptibility breakpoints leading to an overall minor error (MI) rate of 4.7%. Among the tested methods, Etest showed the best correlation with BMD, being characterized with the lowest error rates (only 1% MI) and highest overall EA (100%) and CA (98.8%) for all subsets of isolates. AD yielded the lowest overall agreement (EA 77%, CA 81%) with BMD in a species dependent manner, with the highest apparent discordance being found among the A. baumannii isolates. While the performance of DD for determination of TGC susceptibility among Enterobacteriaceae was excellent, (CA:100% with no errors), the CA was lower (84%) when it was used for A. baumannii where an unacceptably high minor-error rate was noted (16%). No major error or very major error was detected for any of the tested methods. CONCLUSIONS: Etest can be reliably used for TGC susceptibility testing in the three groups of studied bacteria. For the isolates with close-to-breakpoint MICs, testing susceptibility using the reference method is recommended.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Humanos , Testes de Sensibilidade Microbiana , Tigeciclina/farmacologia
9.
Chemotherapy ; 66(3): 99-106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823517

RESUMO

INTRODUCTION: Tigecycline (TGC) is one of the last-resort therapeutic agents for treating infections caused by extensively drug resistant Acinetobacter baumannii isolates. Although resistance to TGC is not common, non-susceptible A. baumannii (NSAB) isolates have been described. In the current study, we aimed to assess the molecular mechanisms mediating TGC non-susceptibility in 5 clinical isolates of A. baumannii with reduced susceptibility to TGC. METHODS: Susceptibility of isolates to TGC as well as various classes of antibiotics was evaluated by broth dilution and disk diffusion methods, respectively. The presence of tetX and tetX1 genes was investigated by PCR. The nucleotide sequences of adeR and adeS genes were assessed by PCR amplicon sequencing. To evaluate the association between reduced susceptibility to TGC and upregulation of AdeABC efflux pump, transcriptional level of adeB gene was quantified by RT-qPCR analysis. RESULTS: All 5 TGC-NSAB isolates had a TGC MIC of ≥4 mg/L and were resistant to all antimicrobials tested by disk diffusion method except for minocycline and doxycycline for which a susceptibility rate of 40% and 20% was observed, respectively. The tetX/X1 genes were not detected in any isolates. All TGC non-susceptible isolates harbored genetic alterations in the adeRS operon, including AdeS G186V, N268H, and D60N and AdeR A136V and V120I substitutions among, which G186V and D60N were predicted by PROVEAN tool analysis as inactivating alterations. Reduced TGC susceptibility was associated with upregulation of AdeABC efflux pump in all TGC non-susceptible isolates. CONCLUSION: It can be concluded from our results that reduced susceptibility to TGC in the studied isolates was mainly mediated by genetic alterations in the AdeRS system, which resulted in overexpression of AdeABC efflux pump. Emergence of TGC non-susceptibility among isolates that had not been previously exposed to TGC is an issue of great concern.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Tigeciclina/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Transcrição Gênica
10.
J Chemother ; 32(2): 75-82, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32009582

RESUMO

Here, we aimed to determine the susceptibility of 70 Mycobacterium tuberculosis isolates obtained from different regions of the country to 8 anti-tuberculosis (anti-TB) drugs and possible underlying mechanisms causing resistance to rifampin, isoniazid, and pyrazinamide. The susceptibility of 70 isolates of M. tuberculosis to anti-TB drugs was tested using proportion method. Strains showing resistance to the first line anti-TB drugs were subjected to PCR amplification and sequencing of the rpoB, katG, ahpC, pncA genes, inhA promoter and oxyR-ahpC intergenic regions to detect resistance conferring mutations. Overall, 77.1% and 77.1% of isolates were resistant to at least one of the tested first- and second-line drugs, respectively. Within the rpoB gene the highest rate of mutation was found in codons 531(450) (56.3%), and 533(452) (12.5%). Also, codons 315 (42.4%) of katG, positions -48, -72 and -77 of oxyR-ahpC (total= 3, 9.1%) and -15 of inhA promoter region (33.3%) were the most altered positions in isoniazid resistant isolates. Only a single mutation was detected for pncA among resistant isolates. High prevalence of resistance to essential anti-TB drugs among M. tuberculosis strains isolated from retreated tuberculosis cases is alarming issue necessitating immediate action to prevent the spread of drug resistant isolates in the country.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Humanos , Irã (Geográfico)/epidemiologia , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas , Pirazinamida/farmacologia , Rifampina/farmacologia
11.
J Glob Antimicrob Resist ; 21: 335-339, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31627025

RESUMO

OBJECTIVES: The worldwide emergence of multidrug-resistant uropathogens has resulted in the revival of old antibiotics such as nitrofurantoin (NIT) for the treatment of uncomplicated urinary tract infections (UTIs). This study aimed to identify determinants of NIT resistance and to investigate the genetic diversity of NIT-resistant (NIT-R) Escherichia coli isolates. METHODS: Six NIT-R and three NIT-susceptible clinical E. coli isolates from patients with UTI were studied. The susceptibility of the isolates to various classes of antibiotics was evaluated by disk diffusion. The presence of plasmid-encoded efflux pump genes (oqxA and oqxB) was investigated by PCR. Nucleotide sequences of the nfsA, nfsB and ribE genes were determined. The genetic relatedness of the NIT-R isolates was evaluated by multilocus sequence typing (MLST). RESULTS: All six NIT-R isolates were characterised with high-level NIT resistance (MIC ≥ 512 mg/L) and they belonged to five distinct STs including ST131 (n = 2), ST73, ST405, ST10 and ST354 (n = 1 each). Amikacin, carbapenems, minocycline, tigecycline and fosfomycin were the most active agents against the studied uropathogens. The oqxA and oqxB genes were not detected in any isolate. All NIT-R isolates harboured inactivating genetic alterations in nfsA and nfsB [NfsA H11Y, S33N, S38Y, W212R substitutions, Δg638 (frameshift), Δa64-g73 (frameshift) and NfsB F84S, P45S, W94Stop, E197Stop substitutions, ΔnfsB locus]. The ribE gene of most isolates was unaffected, except for one isolate co-harbouring a deleterious RibE G85C substitution and NfsA/B alterations. CONCLUSION: NIT resistance in the studied E. coli isolates was mainly mediated by nfsA and nfsB alterations.


Assuntos
Nitrofurantoína , Infecções Urinárias , Escherichia coli/genética , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Nitrofurantoína/farmacologia
12.
Gut Pathog ; 11: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728861

RESUMO

BACKGROUND: The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is a public health concern as this antibiotic is considered to be the last line therapeutic option for infections caused by multidrug-resistant Gram-negative bacteria. Here we aimed to determine the prevalence of colistin resistance, among enterobacteria isolated from poultry and the possible underlying colistin resistance mechanisms. METHODS: A collection of 944 cloacal samples were obtained from poultry and screened for colistin resistance. To uncover the molecular mechanism behind colistin resistance, the presence of plasmid encoded colistin resistance genes mcr-1, mcr-2, mcr-3 and mcr-4 was examined by PCR. The nucleotide sequences of the mgrB, pmrA, pmrB, phoP, phoQ, crrA and crrB genes were determined. The genetic relatedness of the colistin resistant (ColR) isolates was evaluated by Multilocus sequence typing. Three ColR mutants were generated in vitro by repetitive drug exposure. RESULTS: Overall from 931 enteric bacteria isolated from poultry samples obtained from 131 farms, nine ColR bacteria (0.96%) with high level colistin resistance (MICs ≥ 64 mg/L) were detected all being identified as K. pneumoniae. The 9 ColR bacteria originated from different farms and belonged to 7 distinct Sequence types including ST11 (22.2%) and ST726 (22.2%) being the most prevalent STs followed by ST37, ST74, ST485, ST525 and novel sequence type 3380 (11.1% each). mcr-type genes were not detected in any isolate. In 88.8% of the isolates (n = 8), MgrB was inactivated by Insertion of IS elements (IS1-like, IS3-like, IS5-like families, positions + 75, + 113, + 117, + 135) and nonsense mutations at codons 8, 16, 30. All ColR isolates harboured wild type PmrA, PhoP, PhoQ or polymorphic variants of PmrB. Sequence analysis of the CrrB revealed a familiar S195N and 4 novel I27V, T150R, F303S and K325R substitutions. PmrB T93N substitution and mgrB locus deletion were identified in two laboratory induced ColR mutants and one mutant lacked alteration in the studied loci. In one ColR isolate with wild type MgrB an A83V substitution was detected in CrrA. CONCLUSION: It is concluded from our results that colistin resistance in the studied avian K. pneumoniae isolates was mostly linked to alterations identified within the mgrB gene.

13.
J Glob Antimicrob Resist ; 17: 201-208, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30654147

RESUMO

OBJECTIVES: Active extrusion of antituberculosis drugs via efflux pumps (EPs) has been suggested as contributing to drug resistance in Mycobacterium tuberculosis. This study was conducted to determine the role of 10 drug efflux transporters in the development of drug resistance in a series of clinical M. tuberculosis isolates. METHODS: A total of 31 clinical M. tuberculosis isolates without drug exposure [21 multi/extensively drug-resistant (M/XDR-TB) and 10 drug-susceptible isolates] were studied. The expression profile of 10 EP genes, including efpA, mmr, stp, drrA, drrB, mmpL7, Rv1250, Rv1634, Rv2994 and Rv1258c, was investigated against the H37Rv standard strain by quantitative reverse transcription PCR (RT-qPCR). RESULTS: Among the 21M/XDR-TB isolates, 10 showed significantly increased levels of gene expression (>4-fold) for at least one of the studied EPs. Moreover, of the isolates with overexpressed genes, three and seven lacked genetic alterations in the surveyed regions of the rpoB+katG+inhA and katG+inhA genes, respectively. Whilst no elevation was observed in the expression of mmr, Rv1250, Rv1634 and Rv1258c genes in any of the isolates, drrA, stp and drrB were found to be the most commonly overexpressed, being overexpressed in seven, five and three isolates, respectively. Decreased minimum inhibitory concentrations (MICs) of rifampicin, but not isoniazid, were observed in the presence of the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). CONCLUSION: Overexpression of EP genes can contribute to the emergence of a MDR phenotype in M. tuberculosis. Inhibition of EPs may provide a promising strategy for improving tuberculosis treatment outcomes in patients infected with M/XDR-TB isolates.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Proteínas de Membrana Transportadoras/genética , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Regulação Bacteriana da Expressão Gênica , Humanos , Hidrazonas/farmacologia , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Transcriptoma
14.
Microb Drug Resist ; 25(3): 336-343, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30351186

RESUMO

The emergence and dissemination of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates and their involvement in several nosocomial outbreaks are of high concern. This study was conducted to investigate the genetic relatedness and molecular determinants of carbapenem resistance in 100 CRKP isolates. Susceptibility to carbapenems as well as other antibiotics was determined by using disk diffusion method. The Modified Hodge test was performed for detection of carbapenemase production. The minimum inhibitory concentrations of selected antibiotics were determined by broth microdilution method. The presence of blaOXA-48, blaKPC, blaNDM, and blaVIM carbapenemase genes was examined by PCR, and clonal relatedness of CRKP isolates was investigated by pulsed-field gel electrophoresis (PFGE) analysis. blaOXA-48 was the most frequent carbapenemase gene (72%), followed by blaNDM (31%). None of the isolates harbored blaKPC and blaVIM genes. PFGE separated the majority of isolates into 10 clusters, including the major clusters A and B, carrying blaOXA-48, and clusters C and D, carrying blaNDM, and 4 isolates had a unique PFGE pattern. An increased rate of colistin resistance (50%) was detected among the isolates. Tigecycline was found to be the most active agent against CRKP isolates. Our results revealed that high prevalence of blaOXA-48 and blaNDM carbapenamses and resistance to colistin are alarming threats, necessitating an immediate action to prevent the spread of carbapenem-colistin-resistant K. pneumoniae isolates in Iran.


Assuntos
Carbapenêmicos/uso terapêutico , Resistência a Medicamentos/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Colistina/uso terapêutico , Humanos , Irã (Geográfico) , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular/métodos , beta-Lactamases/genética
15.
J Med Microbiol ; 68(1): 60-66, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30422106

RESUMO

PURPOSE: Despite being in clinical use for decades, colistin susceptibility testing remains challenging because of its inherent cationic properties. We aimed to compare the performance characteristics of different methods for testing susceptibility to colistin in a series of clinical isolates of Gram-negative bacilli. METHODOLOGY: One hundred and nine clinical isolates of Klebsiella pneumoniae (n=34), Escherichia coli (n=20), Acinetobacter baumannii (n=17) and Pseudomonas aeruginosa (n=38) were studied for colistin susceptibility using broth microdilution (BMID), broth macrodilution (BMAD), agar dilution (AD) as well as disc-diffusion (DD) utilizing two different commercial disc sources. RESULTS: By using BMID as reference method, 88 and 21 isolates were found to be colistin susceptible and resistant, respectively. Overall, acceptable essential agreement (EA) and categorical agreement (CA) were observed between BMAD and reference method (100 %). Whereas the AD method revealed the lowest rate of EA (61.7, 11.7, 5.0 and 5.2 % for K. pneumoniae, A. baumannii, E. coli and P. aeruginosa, respectively), it showed acceptable or near acceptable CA for K. pneumoniae (100 %), E. coli (100 %) and A. baumannii (88.2 %) isolates but not for P. aeruginosa (13.1 %). DD failed to detect resistance in colistin-resistant (colR) P. aeruginosa (n=5, very major errors of 100 %) but successfully identified all high-level colistin-resistant A. baumannii and K. pneumoniae isolates. CONCLUSION: We found BMAD to be very reliable for colistin MIC determination. Methods AD and DD should not be used for colistin susceptibility testing in P. aeruginosa isolates as these are associated with false-resistant and -susceptible results, respectively.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Testes de Sensibilidade Microbiana/métodos , Farmacorresistência Bacteriana , Humanos
16.
Int J Biol Macromol ; 120(Pt A): 180-188, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30098365

RESUMO

Tuberculosis (TB) is now among the top ten causes of mortality worldwide being resulted in 1.7 million deaths including 0.4 million among people with HIV in 2016. The Bacille Calmette-Guerin (BCG) is the only available TB vaccine which fails to provide consistent protection against pulmonary TB in adults and adolescents despite being efficacious at protecting infants and young children from the most severe, often deadly forms of TB disease. To achieve the goal of global TB elimination by 2050 we will need new interventions including more improved vaccines that are effective in adult individuals who have not been infected with Mycobacterium tuberculosis as well as latently infected or immunocompromised subjects. In recent decades, multiple new vaccine candidates including whole cell vaccines, adjuvanted proteins, and vectored subunit vaccines have entered into the clinical trials. These new TB vaccines are hoped to provide encouraging safety and immunogenicity under various conditions including prevention of TB disease in adolescents and adults, as BCG replacement/boosters, or as therapeutic vaccines to reduce the duration of TB therapy. In this review, we will discuss the status of novel TB vaccine candidates currently under development in preclinical or clinical phases.


Assuntos
Imunogenicidade da Vacina , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Humanos , Mycobacterium bovis/imunologia , Vacinas contra a Tuberculose/uso terapêutico
18.
J Glob Antimicrob Resist ; 13: 197-200, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29747008

RESUMO

OBJECTIVES: Fluoroquinolones (FQs) are recommended as the drugs of choice for the empirical treatment of urinary tract infections (UTIs). This study investigated the molecular determinants of FQ resistance in Escherichia coli and Klebsiella pneumoniae isolates in Iran. METHODS: A total of 364 clinical isolates of E. coli (n=144) and K. pneumoniae (n=220) were collected from patients with UTI. Susceptibility of the isolates to ciprofloxacin, levofloxacin, gatifloxacin and nalidixic acid was evaluated by disk diffusion. The presence of qnrA, qnrB and qnrS genes was assessed by PCR. Nucleotide sequences of the gyrA and parC genes were determined. RESULTS: Eighty-seven (60.4%) and 15 (6.8%) E. coli and K. pneumoniae isolates, respectively, were resistant to at least one of the tested FQs. Plasmid-mediated quinolone resistance (PMQR) genes were detected in 12.6% and 60.0% of FQ-resistant E. coli and K. pneumoniae, respectively. Whilst qnrB predominated in K. pneumoniae, qnrS was the most prevalent PMQR gene in E. coli. S83L (98.9%) and D87N (59.8%) were the most frequent mutations identified in GyrA of E. coli, and 55.2% (n=48) of FQ-resistant E. coli isolates had mutation in ParC harbouring S80I and E84V substitutions. The GyrAS83L substitution was found in only one FQ-resistant K. pneumoniae isolate. CONCLUSIONS: FQ resistance was much more common in E. coli isolates than in K. pneumoniae. Whilst mutations in the drug target-encoding genes gyrA and parC were the major mechanisms involved in FQ resistance in E. coli, PMQR determinants commonly mediated FQ resistance in K. pneumoniae.


Assuntos
DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Quinolonas/farmacologia , Proteínas de Bactérias/genética , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/urina , Humanos , Irã (Geográfico)/epidemiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/urina , Klebsiella pneumoniae/efeitos dos fármacos , Mutação , Plasmídeos , Prevalência , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia
19.
Microb Drug Resist ; 24(9): 1271-1276, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29590004

RESUMO

Colistin is considered a last-hope antibiotic against extensively drug-resistant isolates of Acinetobacter baumannii. Resistance to colistin has been rarely reported for A. baumannii. Genetic alterations in the PmrA-PmrB two-component system and lipid A biosynthesis genes may be associated with colistin resistance. We investigated molecular mechanisms of colistin resistance in three clinical colistin-resistant (ColR) and two colistin-susceptible (ColS) A. baumannii isolates. A ColR mutant was generated in vitro by repetitive drug exposure. The pmrA, pmrB, lpxA, lpxC, and lpxD genes were amplified and sequenced. To evaluate association between colistin resistance and upregulation of pmrCAB operon, transcriptional level of the pmrC gene encoding for lipid A phosphoethanolamine (PEtN) transferase was quantified by reverse transcription quantitative PCR (RT-qPCR) analysis. All clinical and in vitro-selected ColR isolates harbored at least one point mutation in the pmrB gene, including A142V, P233S, T235I, and A227V substitutions as well as duplication of H325. No alteration was found in the pmrA and other amino acid substitutions identified in the pmrB as well as lpx genes did not seem to be involved in colistin resistance as they were found in both ColS and ColR isolates. RT-qPCR analysis revealed a correlation between colistin resistance and pmrC overexpression. Specific alterations in the PmrB, linked to overproduction of PEtN transferase, triggered colistin resistance in the studied A. baumannii isolates.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/microbiologia , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana/métodos , Mutação/genética , Óperon/genética , Fatores de Transcrição/genética
20.
Front Microbiol ; 8: 681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487675

RESUMO

Infectious diseases caused by clinically important Mycobacteria continue to be an important public health problem worldwide primarily due to emergence of drug resistance crisis. In recent years, the control of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (MTB), is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least isoniazid (INH) and rifampicin (RIF), two key drugs in the treatment of the disease. Despite the availability of curative anti-TB therapy, inappropriate and inadequate treatment has allowed MTB to acquire resistance to the most important anti-TB drugs. Likewise, for most mycobacteria other than MTB, the outcome of drug treatment is poor and is likely related to the high levels of antibiotic resistance. Thus, a better knowledge of the underlying mechanisms of drug resistance in mycobacteria could aid not only to select the best therapeutic options but also to develop novel drugs that can overwhelm the existing resistance mechanisms. In this article, we review the distinctive mechanisms of antibiotic resistance in mycobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...