Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6671): 646-648, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943927

RESUMO

A potential mechanism of DNA loop extrusion by molecular motors is discussed.

2.
Science ; 376(6597): 1087-1094, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653469

RESUMO

Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação a DNA , DNA , Complexos Multiproteicos , Adenosina Trifosfatases/química , Microscopia Crioeletrônica , DNA/química , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Conformação de Ácido Nucleico , Imagem Individual de Molécula
3.
Nat Struct Mol Biol ; 27(12): 1211, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33033391

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Struct Mol Biol ; 27(12): 1134-1141, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989304

RESUMO

Structural maintenance of chromosome (SMC) protein complexes are the key organizers of the spatiotemporal structure of chromosomes. The condensin SMC complex has recently been shown to be a molecular motor that extrudes large loops of DNA, but the mechanism of this unique motor remains elusive. Using atomic force microscopy, we show that budding yeast condensin exhibits mainly open 'O' shapes and collapsed 'B' shapes, and it cycles dynamically between these two states over time, with ATP binding inducing the O to B transition. Condensin binds DNA via its globular domain and also via the hinge domain. We observe a single condensin complex at the stem of extruded DNA loops, where the neck size of the DNA loop correlates with the width of the condensin complex. The results are indicative of a type of scrunching model in which condensin extrudes DNA by a cyclic switching of its conformation between O and B shapes.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/ultraestrutura , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Microscopia de Força Atômica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Struct Mol Biol ; 27(8): 743-751, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661420

RESUMO

Complexes containing a pair of structural maintenance of chromosomes (SMC) family proteins are fundamental for the three-dimensional (3D) organization of genomes in all domains of life. The eukaryotic SMC complexes cohesin and condensin are thought to fold interphase and mitotic chromosomes, respectively, into large loop domains, although the underlying molecular mechanisms have remained unknown. We used cryo-EM to investigate the nucleotide-driven reaction cycle of condensin from the budding yeast Saccharomyces cerevisiae. Our structures of the five-subunit condensin holo complex at different functional stages suggest that ATP binding induces the transition of the SMC coiled coils from a folded-rod conformation into a more open architecture. ATP binding simultaneously triggers the exchange of the two HEAT-repeat subunits bound to the SMC ATPase head domains. We propose that these steps result in the interconversion of DNA-binding sites in the catalytic core of condensin, forming the basis of the DNA translocation and loop-extrusion activities.


Assuntos
Proteínas de Transporte/química , Proteínas Cromossômicas não Histona/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
6.
Curr Opin Struct Biol ; 65: 102-109, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32674008

RESUMO

Structural Maintenance of Chromosomes (SMC) protein complexes play key roles in the three-dimensional organization of genomes in all kingdoms of life. Recent insights from chromosome contact mapping experiments and single-molecule imaging assays suggest that these complexes achieve distinct cellular functions by extruding large loops of DNA while they move along the chromatin fiber. In this short review, we summarize recent insights into the molecular architecture of these unconventional DNA motor complexes, their interaction with their DNA substrates, and the remarkable dynamic changes they can undergo during their ATPase reaction cycle.


Assuntos
Cromossomos , Proteínas de Ligação a DNA , DNA , Complexos Multiproteicos , Bactérias , Cromossomos/química , Cromossomos/metabolismo , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Leveduras
7.
Nature ; 579(7799): 438-442, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132705

RESUMO

Condensin, a key component of the structure maintenance of chromosome (SMC) protein complexes, has recently been shown to be a motor that extrudes loops of DNA1. It remains unclear, however, how condensin complexes work together to collectively package DNA into chromosomes. Here we use time-lapse single-molecule visualization to study mutual interactions between two DNA-loop-extruding yeast condensins. We find that these motor proteins, which, individually, extrude DNA in one direction only are able to dynamically change each other's DNA loop sizes, even when far apart. When they are in close proximity, condensin complexes are able to traverse each other and form a loop structure, which we term a Z-loop-three double-stranded DNA helices aligned in parallel with one condensin at each edge. Z-loops can fill gaps left by single loops and can form symmetric dimer motors that pull in DNA from both sides. These findings indicate that condensin may achieve chromosomal compaction using a variety of looping structures.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Proteínas Motores Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Saccharomyces cerevisiae , Adenosina Trifosfatases/química , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Proteínas de Ligação a DNA/química , Proteínas Motores Moleculares/química , Complexos Multiproteicos/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula , Imagem com Lapso de Tempo
8.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31629658

RESUMO

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Cromossomos/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Humanos , Complexos Multiproteicos/fisiologia , Ligação Proteica/fisiologia , Subunidades Proteicas/metabolismo , Coesinas
9.
J Biol Chem ; 294(37): 13822-13829, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31350339

RESUMO

High-resolution structural analysis of flexible proteins is frequently challenging and requires the synergistic application of different experimental techniques. For these proteins, small-angle X-ray scattering (SAXS) allows for a quantitative assessment and modeling of potentially flexible and heterogeneous structural states. Here, we report SAXS characterization of the condensin HEAT-repeat subunit Ycg1Cnd3 in solution, complementing currently available high-resolution crystallographic models. We show that the free Ycg1 subunit is flexible in solution but becomes considerably more rigid when bound to its kleisin-binding partner protein Brn1Cnd2 The analysis of SAXS and dynamic and static multiangle light scattering data furthermore reveals that Ycg1 tends to oligomerize with increasing concentrations in the absence of Brn1. Based on these data, we present a model of the free Ycg1 protein constructed by normal mode analysis, as well as tentative models of Ycg1 dimers and tetramers. These models enable visualization of the conformational transitions that Ycg1 has to undergo to adopt a closed rigid shape and thereby create a DNA-binding surface in the condensin complex.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Chaetomium/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Difração de Raios X/métodos , Adenosina Trifosfatases/metabolismo , Chaetomium/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo
10.
Mol Cell ; 74(6): 1175-1188.e9, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226277

RESUMO

The condensin protein complex plays a key role in the structural organization of genomes. How the ATPase activity of its SMC subunits drives large-scale changes in chromosome topology has remained unknown. Here we reconstruct, at near-atomic resolution, the sequence of events that take place during the condensin ATPase cycle. We show that ATP binding induces a conformational switch in the Smc4 head domain that releases its hitherto undescribed interaction with the Ycs4 HEAT-repeat subunit and promotes its engagement with the Smc2 head into an asymmetric heterodimer. SMC head dimerization subsequently enables nucleotide binding at the second active site and disengages the Brn1 kleisin subunit from the Smc2 coiled coil to open the condensin ring. These large-scale transitions in the condensin architecture lay out a mechanistic path for its ability to extrude DNA helices into large loop structures.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Transporte/química , Chaetomium/genética , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , DNA/química , Complexos Multiproteicos/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Chaetomium/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Células HeLa , Humanos , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Curr Biol ; 28(21): R1266-R1281, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30399354

RESUMO

Protein complexes built of structural maintenance of chromosomes (SMC) and kleisin subunits, including cohesin, condensin and the Smc5/6 complex, are master organizers of genome architecture in all kingdoms of life. How these large ring-shaped molecular machines use the energy of ATP hydrolysis to change the topology of chromatin fibers has remained a central unresolved question of chromosome biology. A currently emerging concept suggests that the common principle that underlies the essential functions of SMC protein complexes in the control of gene expression, chromosome segregation or DNA damage repair is their ability to expand DNA into large loop structures. Here, we review the current knowledge about the biochemical and structural properties of SMC protein complexes that might enable them to extrude DNA loops and compare their action to other motor proteins and nucleic acid translocases. We evaluate the currently predominant models of active loop extrusion and propose a detailed version of a 'scrunching' model, which reconciles much of the available mechanistic data and provides an elegant explanation for how SMC protein complexes fulfill an array of seemingly diverse tasks during the organization of genomes.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromossomos/fisiologia , Complexos Multiproteicos/fisiologia , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , Humanos
13.
Elife ; 72018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30230473

RESUMO

Condensins are genome organisers that shape chromosomes and promote their accurate transmission. Several studies have also implicated condensins in gene expression, although any mechanisms have remained enigmatic. Here, we report on the role of condensin in gene expression in fission and budding yeasts. In contrast to previous studies, we provide compelling evidence that condensin plays no direct role in the maintenance of the transcriptome, neither during interphase nor during mitosis. We further show that the changes in gene expression in post-mitotic fission yeast cells that result from condensin inactivation are largely a consequence of chromosome missegregation during anaphase, which notably depletes the RNA-exosome from daughter cells. Crucially, preventing karyotype abnormalities in daughter cells restores a normal transcriptome despite condensin inactivation. Thus, chromosome instability, rather than a direct role of condensin in the transcription process, changes gene expression. This knowledge challenges the concept of gene regulation by canonical condensin complexes.


Assuntos
Adenosina Trifosfatases/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Complexos Multiproteicos/genética , RNA Fúngico/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G2/genética , Perfilação da Expressão Gênica , Instabilidade Genômica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Complexos Multiproteicos/metabolismo , Mutação , RNA Fúngico/metabolismo , Fase S/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
14.
Elife ; 72018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30109982

RESUMO

The cohesin ring complex is required for numerous chromosomal transactions including sister chromatid cohesion, DNA damage repair and transcriptional regulation. How cohesin engages its chromatin substrate has remained an unresolved question. We show here, by determining a crystal structure of the budding yeast cohesin HEAT-repeat subunit Scc3 bound to a fragment of the Scc1 kleisin subunit and DNA, that Scc3 and Scc1 form a composite DNA interaction module. The Scc3-Scc1 subcomplex engages double-stranded DNA through a conserved, positively charged surface. We demonstrate that this conserved domain is required for DNA binding by Scc3-Scc1 in vitro, as well as for the enrichment of cohesin on chromosomes and for cell viability. These findings suggest that the Scc3-Scc1 DNA-binding interface plays a central role in the recruitment of cohesin complexes to chromosomes and therefore for cohesin to faithfully execute its functions during cell division.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/administração & dosagem , Proteínas de Ciclo Celular/química , Divisão Celular/genética , Cromatina/química , Proteínas Cromossômicas não Histona/administração & dosagem , Proteínas Cromossômicas não Histona/química , Cromossomos/química , DNA/química , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos , Proteínas de Saccharomyces cerevisiae/química , Coesinas
15.
J Cell Biol ; 217(7): 2383-2401, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29735745

RESUMO

Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C2H2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation.


Assuntos
Proteínas de Ciclo Celular/genética , Cromossomos Fúngicos/genética , Mitose/genética , Proteínas de Schizosaccharomyces pombe/genética , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Complexos Multiproteicos/genética , Mutação , Schizosaccharomyces/genética
16.
Science ; 360(6384): 102-105, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29472443

RESUMO

It has been hypothesized that SMC protein complexes such as condensin and cohesin spatially organize chromosomes by extruding DNA into large loops. We directly visualized the formation and processive extension of DNA loops by yeast condensin in real time. Our findings constitute unambiguous evidence for loop extrusion. We observed that a single condensin complex is able to extrude tens of kilobase pairs of DNA at a force-dependent speed of up to 1500 base pairs per second, using the energy of adenosine triphosphate hydrolysis. Condensin-induced loop extrusion was strictly asymmetric, which demonstrates that condensin anchors onto DNA and reels it in from only one side. Active DNA loop extrusion by SMC complexes may provide the universal unifying principle for genome organization.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ligação a DNA/química , DNA/química , Complexos Multiproteicos/química , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Imagem Individual de Molécula/métodos , Trifosfato de Adenosina/química , Hidrólise , Fatores de Tempo
17.
Nature ; 551(7678): 51-56, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094699

RESUMO

Imaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Posicionamento Cromossômico , Animais , Cromatina/química , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Fígado/metabolismo , Camundongos , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
18.
EMBO J ; 36(23): 3448-3457, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118001

RESUMO

Condensin, a conserved member of the SMC protein family of ring-shaped multi-subunit protein complexes, is essential for structuring and compacting chromosomes. Despite its key role, its molecular mechanism has remained largely unknown. Here, we employ single-molecule magnetic tweezers to measure, in real time, the compaction of individual DNA molecules by the budding yeast condensin complex. We show that compaction can proceed in large steps, driving DNA molecules into a fully condensed state against forces of up to 2 pN. Compaction can be reversed by applying high forces or adding buffer of high ionic strength. While condensin can stably bind DNA in the absence of ATP, ATP hydrolysis by the SMC subunits is required for rendering the association salt insensitive and for the subsequent compaction process. Our results indicate that the condensin reaction cycle involves two distinct steps, where condensin first binds DNA through electrostatic interactions before using ATP hydrolysis to encircle the DNA topologically within its ring structure, which initiates DNA compaction. The finding that both binding modes are essential for its DNA compaction activity has important implications for understanding the mechanism of chromosome compaction.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , DNA Fúngico/química , Proteínas de Ligação a DNA/genética , Hidrólise , Magnetismo , Modelos Moleculares , Complexos Multiproteicos/genética , Conformação de Ácido Nucleico , Pinças Ópticas , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática
19.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28988770

RESUMO

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eucariotos/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Chaetomium/metabolismo , Cromossomos/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Eucariotos/química , Proteínas Fúngicas/química , Células HeLa , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
20.
Science ; 358(6363): 672-676, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28882993

RESUMO

Condensin plays crucial roles in chromosome organization and compaction, but the mechanistic basis for its functions remains obscure. We used single-molecule imaging to demonstrate that Saccharomyces cerevisiae condensin is a molecular motor capable of adenosine triphosphate hydrolysis-dependent translocation along double-stranded DNA. Condensin's translocation activity is rapid and highly processive, with individual complexes traveling an average distance of ≥10 kilobases at a velocity of ~60 base pairs per second. Our results suggest that condensin may take steps comparable in length to its ~50-nanometer coiled-coil subunits, indicative of a translocation mechanism that is distinct from any reported for a DNA motor protein. The finding that condensin is a mechanochemical motor has important implications for understanding the mechanisms of chromosome organization and condensation.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Fúngicos/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Motores Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...