Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 25(1): 8-23, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35929950

RESUMO

The Earth's geomagnetic field (GMF) is an inescapable environmental factor for plants that affects all growth and yield parameters. Both strong and weak magnetic fields (MF), as compared to the GMF, have specific roles in plant growth and development. MF technology is an eco-friendly technique that does not emit waste or generate harmful radiation, nor require any external power supply, so it can be used in sustainable modern agriculture. Thus, exposure of plants to MF is a potential affordable, reusable and safe practice for enhancing crop productivity by changing physiological and biochemical processes. However, the effect of MF on plant physiological and biochemical processes is not yet well understood. This review describes the effects of altering MF conditions (higher or lower values than the GMF) on physiological and biochemical processes of plants. The current contradictory and inconsistent outcomes from studies on varying effects of MF on plants could be related to species and/or MF exposure time and intensity. The reviewed literature suggests MF have a role in changing physiological processes, such as respiration, photosynthesis, nutrient uptake, water relations and biochemical attributes, including genes involved in ROS, antioxidants, enzymes, proteins and secondary metabolites. MF application might efficiently increase growth and yield of many crops, and as such, should be the focus for future research.


Assuntos
Fator de Maturação da Glia , Campos Magnéticos , Desenvolvimento Vegetal , Fotossíntese , Produtos Agrícolas
2.
Plant Biol (Stuttg) ; 24(4): 540-558, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34870354

RESUMO

As a result of climate change, abiotic stresses are the most common cause of crop losses worldwide. Abiotic stresses significantly impair plants' physiological, biochemical, molecular and cellular mechanisms, limiting crop productivity under adverse climate conditions. However, plants can implement essential mechanisms against abiotic stressors to maintain their growth and persistence under such stressful environments. In nature, plants have developed several adaptations and defence mechanisms to mitigate abiotic stress. Moreover, recent research has revealed that signalling molecules like hydrogen sulfide (H2 S) play a crucial role in mitigating the adverse effects of environmental stresses in plants by implementing several physiological and biochemical mechanisms. Mainly, H2 S helps to implement antioxidant defence systems, and interacts with other molecules like nitric oxide (NO), reactive oxygen species (ROS), phytohormones, etc. These molecules are well-known as the key players that moderate the adverse effects of abiotic stresses. Currently, little progress has been made in understanding the molecular basis of the protective role of H2 S; however, it is imperative to understand the molecular basis using the state-of-the-art CRISPR-Cas gene-editing tool. Subsequently, genetic engineering could provide a promising approach to unravelling the molecular basis of stress tolerance mediated by exogenous/endogenous H2 S. Here, we review recent advances in understanding the beneficial roles of H2 S in conferring multiple abiotic stress tolerance in plants. Further, we also discuss the interaction and crosstalk between H2 S and other signal molecules; as well as highlighting some genetic engineering-based current and future directions.


Assuntos
Sulfeto de Hidrogênio , Óxido Nítrico , Fenômenos Fisiológicos Vegetais , Plantas/genética , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...