Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36525885

RESUMO

Aggregation of proteins is a critical quality attribute and a major concern during the purification of therapeutic proteins, like monoclonal antibodies. In-solution experiments applying different stress scenarios, e.g., mechanical, or physical stresses, can determine the overall conformational stability of the protein to enhance drug product shelf-life. Several groups have reported surface-induced unfolding and aggregation of monoclonal antibodies and their derivatives during cation exchange chromatography, which results in a two-peak elution behavior of the protein and its species. We have investigated universal influencing factors, like temperature and hold time, on this phenomenon. The formation of the second peak is a kinetic process, which is strongly influenced by temperature during the hold time. However, our main focus was the application of excipients and their influence on the two-peak elution behavior. We compared the on-column screening results with results obtained through a "traditional" in-solution screening using nanoDSF. Mostly, stabilizing excipients, like Sucrose, show their stabilizing abilities in both systems, but some discrepancies, e.g., using Arginine, between the two orthogonal techniques show the potential of the on-column screening system to lead to unexpected results, which would not necessarily be visible in in-solution experiments.


Assuntos
Anticorpos Monoclonais , Excipientes , Cromatografia por Troca Iônica/métodos , Excipientes/química , Anticorpos Monoclonais/química , Temperatura , Cátions
2.
J Pharm Sci ; 111(12): 3261-3274, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096287

RESUMO

The application of surfactants in liquid protein formulation is a common practice to protect proteins from liquid-air interface-induced protein aggregation. Typically, Polysorbate 20 or 80 are used, but degradation of these surfactants can result in particle formation and/or protein degradation. The purpose of the current study was to directly compare three alternative protein stabilizing molecules - Poloxamer 188, hydroxypropyl-cyclodextrin and a trehalose-based surfactant - to Polysorbate 80 for their capacities to reduce agitation-induced protein aggregation and particle formation; and furthermore, investigate their underlying protein stabilizing mechanisms. To this end, a small-volume, rapid agitation stress approach was used to quantify the molecules' abilities to stabilize two model proteins. This assay was presented to be a powerful tool to screen the protein stabilizing capability of surfactants using minimum of material and time. SEC, turbidity measurements and particle analysis showed an efficient protein stabilization of all tested surfactants as well as cyclodextrin. STD-NMR and dynamic surface tension measurements indicated the competitive surface adsorption to be the main protein stabilizing mechanism of the three surfactants tested. It might also play a role to some extent in the protein stabilization by HPßCD. However, additional mechanisms might also contribute to protein stabilization leaving room for further investigations.


Assuntos
Agregados Proteicos , Tensoativos , Tensoativos/química , Polissorbatos/química , Excipientes/química , 2-Hidroxipropil-beta-Ciclodextrina , Proteínas/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-34274642

RESUMO

The purification of monoclonal antibodies and Fc fusion proteins consist of several unit operations operated commonly as a platform approach, starting with Protein A chromatography. The first capture step, the following low pH virus inactivation, and subsequent ion exchange chromatography steps are mostly able to remove any impurities, like host cell proteins, aggregates, and viruses. The changes in pH and conductivity during these steps can lead to additional unwanted product species like aggregates. In this study, excipients with stabilizing abilities, like polyols, were used as buffer system additives to study their impact on several aspects during Protein A chromatography, low pH virus inactivation, and cation exchange chromatography. The results show that excipients, like PEG4000, influence antibody elution behavior, as well as host-cell protein elution behavior in a pH-gradient setup. Sugar excipients, like Sucrose, stabilize the antibody during low pH virus inactivation. All excipients tested show no negative impact on virus inactivation and dynamic binding capacity in a subsequent cation exchange chromatography step. This study indicates that excipients and, possibly excipient combinations, can have a beneficial effect on purification without harming subsequent downstream processing steps.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Excipientes , Inativação de Vírus/efeitos dos fármacos , Animais , Células CHO , Cromatografia por Troca Iônica , Cricetinae , Cricetulus , Excipientes/química , Excipientes/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Proteína Estafilocócica A , Sacarose/química , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...