Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Health Serv Res ; 23(1): 1070, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803351

RESUMO

BACKGROUND: Primary healthcare systems require adequate staffing to meet the needs of their local population. Guidelines typically use population ratio targets for healthcare workers, such as Ethiopia's goal of two health extension workers for every five thousand people. However, fixed ratios do not reflect local demographics, fertility rates, disease burden (e.g., malaria endemicity), or trends in these values. Recognizing this, we set out to estimate the clinical workload to meet the primary healthcare needs in Ethiopia by region. METHODS: We utilize the open-source R package PACE-HRH for our analysis, which is a stochastic Monte Carlo simulation model that estimates workload for a specified service package and population. Assumptions and data inputs for region-specific fertility, mortality, disease burden were drawn from literature, DHS, and WorldPop. We project workload until 2035 for seven regions and two charted cities of Ethiopia. RESULTS: All regions and charted cities are expected to experience increased workload between 2021 and 2035 for a starting catchment of five thousand people. The expected (mean) annual clinical workload varied from 2,930 h (Addis) to 3,752 h (Gambela) and increased by 19-28% over fifteen years. This results from a decline in per capita workload (due to declines in fertility and infectious diseases), overpowered by total population growth. Pregnancy, non-communicable diseases, sick child care, and nutrition remain the largest service categories, but their priority shifts substantially in some regions by 2035. Sensitivity analysis shows that fertility assumptions have major implications for workload. We incorporate seasonality and estimate monthly variation of up to 8.9% (Somali), though most services with high variability are declining. CONCLUSIONS: Regional variation in demographics, fertility, seasonality, and disease trends all affect the workload estimates. This results in differences in expected clinical workload, the level of uncertainty in those estimates, and relative priorities between service categories. By showing these differences, we demonstrate the inadequacy of a fixed population ratio for staffing allocation. Policy-makers and regulators need to consider these factors in designing their healthcare systems, or they risk sub-optimally allocating workforce and creating inequitable access to care.


Assuntos
Doenças Transmissíveis , Malária , Gravidez , Feminino , Humanos , Etiópia/epidemiologia , Efeitos Psicossociais da Doença , Atenção Primária à Saúde
2.
Int J Infect Dis ; 110: 341-352, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34303843

RESUMO

BACKGROUND: The case count for coronavirus disease 2019 (COVID-19) is the predominant measure used to track epidemiological dynamics and inform policy decision-making. Case counts, however, are influenced by testing rates and strategies, which have varied over time and space. A method to interpret COVID-19 case counts consistently in the context of other surveillance data is needed, especially for data-limited settings in low- and middle-income countries (LMICs). METHODS: Statistical analyses were used to detect changes in COVID-19 surveillance data. The pruned exact linear time change detection method was applied for COVID-19 case counts, number of tests, and test positivity rate over time. With this information, change points were categorized as likely driven by epidemiological dynamics or non-epidemiological influences, such as noise. FINDINGS: Higher rates of epidemiological change detection are more associated with open testing policies than with higher testing rates. This study quantified alignment of non-pharmaceutical interventions with epidemiological changes. LMICs have the testing capacity to measure prevalence with precision if they use randomized testing. Rwanda stands out as a country with an efficient COVID-19 surveillance system. Subnational data reveal heterogeneity in epidemiological dynamics and surveillance. INTERPRETATION: Relying solely on case counts to interpret pandemic dynamics has important limitations. Normalizing counts by testing rate mitigates some of these limitations, and an open testing policy is key to efficient surveillance. The study findings can be leveraged by public health officials to strengthen COVID-19 surveillance and support programmatic decision-making.


Assuntos
COVID-19 , Países em Desenvolvimento , Humanos , Pandemias , Saúde Pública , SARS-CoV-2
4.
Vaccine ; 37(41): 6093-6101, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31471145

RESUMO

Measles vaccination is a cost-effective way to prevent infection and reduce mortality and morbidity. However, in countries with fragile routine immunization infrastructure, coverage rates are still low and supplementary immunization campaigns (SIAs) are used to reach previously unvaccinated children. During campaigns, vaccine is generally administered to every child, regardless of their vaccination status and as a result, there is the possibility that a child that is already immune to measles (i.e. who has had 2+ vaccinations) would receive an unnecessary dose, resulting in excess cost. Selective vaccination has been proposed as one solution to this; children who were able to provide documentation of previous vaccination would not be vaccinated repeatedly. While this would result in reduced vaccine and supply cost, it would also require additional staff time and increased social mobilization investment, potentially outweighing the benefits. We utilize Monte Carlo simulation to assess under what conditions a selective vaccination policy would indeed result in net savings. We demonstrate that cost savings are possible in contexts with a high joint probability of an individual child having both 2+ previous measles doses and also an available record. We also find that the magnitude of net cost savings is highly dependent on whether a country is using measles-only or measles-rubella vaccine and on the required skill set of the individual who would review the previous vaccination records.


Assuntos
Análise Custo-Benefício/métodos , Vacina contra Sarampo/economia , Sarampo/prevenção & controle , Vacinação/economia , Criança , Pré-Escolar , Feminino , Pessoal de Saúde/estatística & dados numéricos , Humanos , Imunização/economia , Imunização/métodos , Programas de Imunização , Masculino , Vacina contra Sarampo/uso terapêutico , Vacina contra Rubéola/economia , Vacina contra Rubéola/uso terapêutico , Vacinação/métodos
5.
Vaccine ; 37(17): 2356-2368, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30914223

RESUMO

INTRODUCTION: The lack of specific policies on how many children must be present at a vaccinating location before a healthcare worker can open a measles-containing vaccine (MCV) - i.e. the vial-opening threshold - has led to inconsistent practices, which can have wide-ranging systems effects. METHODS: Using HERMES-generated simulation models of the routine immunization supply chains of Benin, Mozambique and Niger, we evaluated the impact of different vial-opening thresholds (none, 30% of doses must be used, 60%) and MCV presentations (10-dose, 5-dose) on each supply chain. We linked these outputs to a clinical- and economic-outcomes model which translated the change in vaccine availability to associated infections, medical costs, and DALYs. We calculated the economic impact of each policy from the health system perspective. RESULTS: The vial-opening threshold that maximizes vaccine availability while minimizing costs varies between individual countries. In Benin (median session size = 5), implementing a 30% vial-opening threshold and tailoring distribution of 10-dose and 5-dose MCVs to clinics based on session size is the most cost-effective policy, preventing 671 DALYs ($471/DALY averted) compared to baseline (no threshold, 10-dose MCVs). In Niger (median MCV session size = 9), setting a 60% vial-opening threshold and tailoring MCV presentations is the most cost-effective policy, preventing 2897 DALYs ($16.05/ DALY averted). In Mozambique (median session size = 3), setting a 30% vial-opening threshold using 10-dose MCVs is the only beneficial policy compared to baseline, preventing 3081 DALYs ($85.98/DALY averted). Across all three countries, however, a 30% vial-opening threshold using 10-dose MCVs everywhere is the only MCV threshold that consistently benefits each system compared to baseline. CONCLUSION: While the ideal vial-opening threshold policy for MCV varies by supply chain, implementing a 30% vial-opening threshold for 10-dose MCVs benefits each system by improving overall vaccine availability and reducing associated medical costs and DALYs compared to no threshold.


Assuntos
Análise Custo-Benefício , Programas de Imunização/economia , Vacina contra Sarampo/economia , Sarampo/epidemiologia , Sarampo/prevenção & controle , Modelos Teóricos , Vacinação/economia , Algoritmos , Humanos , Vacina contra Sarampo/administração & dosagem , Vacina contra Sarampo/imunologia , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...