Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 58(14): 1878-1891, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30768260

RESUMO

The tiny picoalga, Ostreococcus tauri, originating from the Thau Lagoon is a member of the marine phytoplankton. Because of its highly reduced genome and small cell size, while retaining the fundamental requirements of a eukaryotic photosynthetic cell, it became a popular model organism for studying photosynthesis or circadian clock-related processes. We analyzed the spectroscopic properties of the photoreceptor domain of the histidine kinase rhodopsin Ot-HKR that is suggested to be involved in the light-induced entrainment of the Ostreococcus circadian clock. We found that the rhodopsin, Ot-Rh, dark state absorbs maximally at 505 nm. Exposure to green-orange light led to the accumulation of a blue-shifted M-state-like absorbance form with a deprotonated Schiff base. This Ot-Rh P400 state had an unusually long lifetime of several minutes. A second long-living photoproduct with a red-shifted absorbance, P560, accumulated upon illumination with blue/UVA light. The resulting photochromicity of the rhodopsin is expected to be advantageous to its function as a molecular control element of the signal transducing HKR domains. The light intensity and the ratio of blue vs green light are reflected by the ratio of rhodopsin molecules in the long-living absorbance forms. Furthermore, dark-state absorbance and the photocycle kinetics vary with the salt content of the environment substantially. This observation is attributed to anion binding in the dark state and a transient anion release during the photocycle, indicating that the salinity affects the photoinduced processes.


Assuntos
Proteínas de Algas/metabolismo , Clorófitas/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Histidina Quinase/metabolismo , Rodopsina/metabolismo , Água do Mar/microbiologia , Proteínas de Algas/genética , Sequência de Aminoácidos , Clorófitas/genética , Clorófitas/efeitos da radiação , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Receptor Quinase 1 Acoplada a Proteína G/genética , Histidina Quinase/genética , Cinética , Luz , Rodopsina/genética , Salinidade , Água do Mar/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Biol Chem ; 287(47): 40083-90, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027869

RESUMO

Rhodopsins are light-activated chromoproteins that mediate signaling processes via transducer proteins or promote active or passive ion transport as ion pumps or directly light-activated channels. Here, we provide spectroscopic characterization of a rhodopsin from the Chlamydomonas eyespot. It belongs to a recently discovered but so far uncharacterized family of histidine kinase rhodopsins (HKRs). These are modular proteins consisting of rhodopsin, a histidine kinase, a response regulator, and in some cases an effector domain such as an adenylyl or guanylyl cyclase, all encoded in a single protein as a two-component system. The recombinant rhodopsin fragment, Rh, of HKR1 is a UVA receptor (λ(max) = 380 nm) that is photoconverted by UV light into a stable blue light-absorbing meta state Rh-Bl (λ(max) = 490 nm). Rh-Bl is converted back to Rh-UV by blue light. Raman spectroscopy revealed that the Rh-UV chromophore is in an unusual 13-cis,15-anti configuration, which explains why the chromophore is deprotonated. The excited state lifetime of Rh-UV is exceptionally stable, probably caused by a relatively unpolar retinal binding pocket, converting into the photoproduct within about 100 ps, whereas the blue form reacts 100 times faster. We propose that the photochromic HKR1 plays a role in the adaptation of behavioral responses in the presence of UVA light.


Assuntos
Adaptação Fisiológica/fisiologia , Chlamydomonas reinhardtii/enzimologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Rodopsina/metabolismo , Raios Ultravioleta , Adaptação Fisiológica/efeitos da radiação , Adenilil Ciclases/química , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Sítios de Ligação , Chlamydomonas reinhardtii/genética , Guanilato Ciclase/química , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Histidina Quinase , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Rodopsina/química , Rodopsina/genética
3.
J Biol Chem ; 286(2): 1181-8, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21030594

RESUMO

The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.


Assuntos
Adenilil Ciclases , Beggiatoa/enzimologia , Beggiatoa/genética , AMP Cíclico/metabolismo , Luz , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Adenilil Ciclases/efeitos da radiação , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Drosophila/enzimologia , Drosophila/genética , Ativação Enzimática/efeitos da radiação , Escherichia coli/enzimologia , Escherichia coli/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Humanos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/fisiologia , Oócitos/fisiologia , Fotoquímica , Ratos , Ratos Wistar , Xenopus
4.
Biophys J ; 95(11): 5005-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18621842

RESUMO

H(+)-pumping rhodopsins mediate a primordial conversion of light to metabolic energy. Bacteriorhodopsin from Halobacterium salinarium is the first identified and (biochemically) best-studied H(+)-pumping rhodopsin. The electrical properties of H(+)-pumping rhodopsins, however, are known in more detail for the homolog Acetabularia rhodopsin, isolated from the eukaryotic green alga Acetabularia acetabulum. Based on data from Acetabularia rhodopsin we present a general reaction kinetic model of H(+)-pumping rhodopsins with only seven independent parameters, which fits the kinetic properties of photocurrents as functions of light, transmembrane voltage, internal and external pH, and time. The model describes fast photoisomerization of retinal with simultaneous H(+) transfer to an H(+) acceptor, reprotonation of retinal from the intracellular face via an H(+) donor, and proton release to the extracellular space via an H(+) release complex. The voltage sensitivities of the individual reaction steps and their temporal changes are treated here by a novel approach, whereby--as in an Ohmic voltage divider--the effective portions of the total transmembrane voltage decrease with the relative velocities of the individual reaction steps. This analysis quantitatively infers dynamic changes of the voltage profile and of the pK values of the H(+)-binding sites involved.


Assuntos
Acetabularia/metabolismo , Bacteriorodopsinas/metabolismo , Condutividade Elétrica , Acetabularia/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Luz , Modelos Biológicos , Sensibilidade e Especificidade , Fatores de Tempo , Titulometria
5.
Electrophoresis ; 26(13): 2495-502, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15948218

RESUMO

We describe a novel approach to generate dynamic pH gradients suited to fractionate or purify samples of biomolecules or particles such as proteins and viruses in tiny volumes. The method combines diffusion and electromigration between micro-scaled channels embedded in hydrogel. For the used geometry and in accordance with numerical calculations the gel-channel system reaches a tuneable, steady-state pH gradient after a few minutes. For quantification of experimentally generated pH-profiles, the concentration independent extinction ratio of phenol red at two wavelengths is used. The proposed electrophoretic flow-cell is simple and flexible since no Immobilines are required to establish the pH gradient.


Assuntos
Eletroforese em Gel de Ágar/métodos , Soluções Tampão , Eletroforese em Gel de Ágar/instrumentação , Concentração de Íons de Hidrogênio , Matemática , Microquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...