Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1240342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600169

RESUMO

CLAVATA3/ESR-related (CLE) peptides perform a variety of important functions in plant development and historically have been targeted during the domestication of existing crops. Pennycress (Thlaspi arvense) is an emerging biofuel crop currently undergoing domestication that offers novel monetary and environmental incentives as a winter cover crop during an otherwise fallow period of the corn/soybean farming rotation. Here we report the characterization of the CLE gene family in pennycress through homology comparison of the CLE motif with other dicot species by conducting a homology comparison and maximum likelihood phylogenetic analysis supplemented with manual annotation. Twenty-seven pennycress CLE genes were identified, and their expression analyzed through transcriptome profiling and RT-qPCR. Our study provides a genome-wide analysis of the CLE gene family in pennycress and carries significant value for accelerating the domestication of this crop through identification of potential key developmental regulatory genes.

2.
Plant Direct ; 7(5): e496, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37168319

RESUMO

Plants generate their reproductive organs, the stamens and the carpels, de novo within the flowers that form when the plant reaches maturity. The carpels comprise the female reproductive organ, the gynoecium, a complex organ that develops along several axes of polarity and is crucial for plant reproduction, fruit formation, and seed dispersal. The epigenetic trithorax group (trxG) protein ULTRAPETALA1 (ULT1) and the GARP domain transcription factor KANADI1 (KAN1) act cooperatively to regulate Arabidopsis thaliana gynoecium patterning along the apical-basal polarity axis; however, the molecular pathways through which this patterning activity is achieved remain to be explored. In this study, we used transcriptomics to identify genome-wide ULT1 and KAN1 target genes during reproductive development. We discovered 278 genes in developing flowers that are regulated by ULT1, KAN1, or both factors together. Genes involved in developmental and reproductive processes are overrepresented among ULT1 and/or KAN1 target genes, along with genes involved in biotic or abiotic stress responses. Consistent with their function in regulating gynoecium patterning, a number of the downstream target genes are expressed in the developing gynoecium, including a unique subset restricted to the stigmatic tissue. Further, we also uncovered a number of KAN1- and ULT1-induced genes that are transcribed predominantly or exclusively in developing stamens. These findings reveal a potential cooperative role for ULT1 and KAN1 in male as well as female reproductive development that can be investigated with future genetic and molecular experiments.

3.
PLoS One ; 14(10): e0224781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31665183

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0176507.].

4.
PLoS One ; 12(4): e0176507, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445526

RESUMO

Plants produce an immense diversity of natural products (i.e. secondary or specialized metabolites) that offer a rich source of known and potentially new pharmaceuticals and other desirable bioproducts. The Traditional Chinese Medicinal plant Isodon rubescens (Lamiaceae) contains an array of bioactive labdane-related diterpenoid natural products. Of these, the ent-kauranoid oridonin is the most prominent specialized metabolite that has been extensively studied for its potent antimicrobial and anticancer efficacy. Mining of a previously established transcriptome of I. rubescens leaf tissue identified seven diterpene synthase (diTPSs) candidates. Here we report the functional characterization of four I. rubescens diTPSs. IrTPS5 and IrTPS3 were identified as an ent-copalyl diphosphate (CPP) synthase and a (+)-CPP synthase, respectively. Distinct transcript abundance of IrTPS5 and the predicted ent-CPP synthase IrTPS1 suggested a role of IrTPS5 in specialized ent-kaurene metabolism possibly en route to oridonin. Nicotiana benthamiana co-expression assays demonstrated that IrTPS4 functions sequentially with IrTPS3 to form miltiradiene. In addition, IrTPS2 converted the IrTPS3 product (+)-CPP into the hydroxylated tricyclic diterpene nezukol not previously identified in I. rubescens. Metabolite profiling verified the presence of nezukol in I. rubescens leaf tissue. The proposed IrTPS2-catalyzed reaction mechanism proceeds via the common ionization of the diphosphate group of (+)-CPP, followed by formation of an intermediary pimar-15-en-8-yl+ carbocation and neutralization of the carbocation by water capture at C-8 to yield nezukol, as confirmed by nuclear magnetic resonance (NMR) analysis. Oxygenation activity is rare for the family of class I diTPSs and offers new catalysts for developing metabolic engineering platforms to produce a broader spectrum of bioactive diterpenoid natural products.


Assuntos
Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Isodon/metabolismo , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/classificação , Biocatálise , Clonagem Molecular , Diterpenos/química , Diterpenos do Tipo Caurano/biossíntese , Diterpenos do Tipo Caurano/química , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Isodon/química , Isodon/genética , Espectroscopia de Ressonância Magnética , Metaboloma , Filogenia , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Nicotiana/química , Nicotiana/metabolismo
5.
Plant J ; 89(5): 885-897, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27865008

RESUMO

Salvia divinorum commonly known as diviner's sage, is an ethnomedicinal plant of the mint family (Lamiaceae). Salvia divinorum is rich in clerodane-type diterpenoids, which accumulate predominantly in leaf glandular trichomes. The main bioactive metabolite, salvinorin A, is the first non-nitrogenous natural compound known to function as an opioid-receptor agonist, and is undergoing clinical trials for potential use in treating neuropsychiatric diseases and drug addictions. We report here the discovery and functional characterization of two S. divinorum diterpene synthases (diTPSs), the ent-copalyl diphosphate (ent-CPP) synthase SdCPS1, and the clerodienyl diphosphate (CLPP) synthase SdCPS2. Mining of leaf- and trichome-specific transcriptomes revealed five diTPSs, two of which are class II diTPSs (SdCPS1-2) and three are class I enzymes (SdKSL1-3). Of the class II diTPSs, transient expression in Nicotiana benthamiana identified SdCPS1 as an ent-CPP synthase, which is prevalent in roots and, together with SdKSL1, exhibits a possible dual role in general and specialized metabolism. In vivo co-expression and in vitro assays combined with nuclear magnetic resonance (NMR) analysis identified SdCPS2 as a CLPP synthase. A role of SdCPS2 in catalyzing the committed step in salvinorin A biosynthesis is supported by its biochemical function, trichome-specific expression and absence of additional class II diTPSs in S. divinorum. Structure-guided mutagenesis revealed four catalytic residues that enabled the re-programming of SdCPS2 activity to afford four distinct products, thus advancing our understanding of how neo-functionalization events have shaped the array of different class II diTPS functions in plants, and may promote synthetic biology platforms for a broader spectrum of diterpenoid bioproducts.


Assuntos
Alquil e Aril Transferases/metabolismo , Diterpenos Clerodânicos/metabolismo , Diterpenos/metabolismo , Proteínas de Plantas/metabolismo , Salvia/enzimologia , Salvia/metabolismo , Alquil e Aril Transferases/genética , Produtos Biológicos/metabolismo , Proteínas de Plantas/genética , Salvia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...