Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 9(26): 18198-18213, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719599

RESUMO

Mutations in Fanconi Anemia or Homologous Recombination (FA/HR) genes can cause DNA repair defects and could therefore impact cancer treatment response and patient outcome. Their functional impact and clinical relevance in head and neck squamous cell carcinoma (HNSCC) is unknown. We therefore questioned whether functional FA/HR defects occurred in HNSCC and whether they are associated with FA/HR variants. We assayed a panel of 29 patient-derived HNSCC cell lines and found that a considerable fraction is hypersensitive to the crosslinker Mitomycin C and PARP inhibitors, a functional measure of FA/HR defects. DNA sequencing showed that these hypersensitivities are associated with the presence of bi-allelic rare germline and somatic FA/HR gene variants. We next questioned whether such variants are associated with prognosis and treatment response in HNSCC patients. DNA sequencing of 77 advanced stage HNSCC tumors revealed a 19% incidence of such variants. Importantly, these variants were associated with a poor prognosis (p = 0.027; HR = 2.6, 1.1-6.0) but favorable response to high cumulative cisplatin dose. We show how an integrated in vitro functional repair and genomic analysis can improve the prognostic value of genetic biomarkers. We conclude that repair defects are marked and frequent in HNSCC and are associated with clinical outcome.

2.
Oncotarget ; 8(43): 73925-73937, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088757

RESUMO

Treatment of advanced head and neck squamous cell carcinoma (HNSCC) is plagued by low survival and high recurrence rates, despite multimodal therapies. Presently, cisplatin or cetuximab is used in combination with radiotherapy which has resulted in minor survival benefits but increased severe toxicities relative to RT alone. This underscores the urgent need for improved tumor-specific radiosensitizers for better control with lower toxicities. In a small molecule screen targeting kinases, performed on three HNSCC cell lines, we identified GSK635416A as a novel radiosensitizer. The extent of radiosensitization by GSK635416A outperformed the radiosensitization observed with cisplatin and cetuximab in our models, while exhibiting virtually no cytotoxicity in the absence of radiation and in normal fibroblast cells. Radiation induced phosphorylation of ATM was inhibited by GSK635416A. GSK63541A increased DNA double strand breaks after radiation and GSK63541A mediated radiosensitization was lacking in ATM-mutated cells thereby further supporting the ATM inhibiting properties of GSK63541A. As a novel ATM inhibitor with highly selective radiosensitizing activity, GSK635416A holds promise as a lead in the development of drugs active in potentiating radiotherapy for HNSCC and other cancer types.

3.
Radiother Oncol ; 116(3): 358-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25981132

RESUMO

BACKGROUND AND PURPOSE: The PARP inhibitor olaparib is currently tested in clinical phase 1 trials to define safe dose levels in combination with RT. However, certain clinically relevant insights are still lacking. Here we test, while comparing to single agent activity, the olaparib dose and genetic background dependence of olaparib-mediated radiosensitization. MATERIALS AND METHODS: Long-term growth inhibition and clonogenic assays were used to assess radiosensitization in BRCA2-deficient and BRCA2-complemented cells and in a panel of human head and neck squamous cell carcinoma cell lines. RESULTS: The extent of radiosensitization greatly depended on the olaparib dose, the radiation dose and the homologous recombination status of cells. Olaparib concentrations that resulted in radiosensitization prevented PAR induction by irradiation. Seven hours olaparib exposures were sufficient for radiosensitization. Importantly, the radiosensitizing effects can be observed at much lower olaparib doses than the single agent effects. CONCLUSION: Extrapolation of these data to the clinic suggests that low olaparib doses are sufficient to cause radiosensitization, underlining the potential of the treatment. Here we show that drug doses achieving radiosensitization can greatly differ from those achieving single agent activities, an important consideration when developing combined radiotherapy strategies with novel targeted agents.


Assuntos
Recombinação Homóloga/efeitos dos fármacos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Doses de Radiação , Radiossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA