Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 15(1): 1550, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378733

RESUMO

Super-resolution techniques expand the abilities of researchers who have the knowledge and resources to either build or purchase a system. This excludes the part of the research community without these capabilities. Here we introduce the openSIM add-on to upgrade existing optical microscopes to Structured Illumination super-resolution Microscopes (SIM). The openSIM is an open-hardware system, designed and documented to be easily duplicated by other laboratories, making super-resolution modality accessible to facilitate innovative research. The add-on approach gives a performance improvement for pre-existing lab equipment without the need to build a completely new system.

2.
Bioengineering (Basel) ; 10(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760183

RESUMO

Super-resolution structured illumination microscopy (SR-SIM) is an optical fluorescence microscopy method which is suitable for imaging a wide variety of cells and tissues in biological and biomedical research. Typically, SIM methods use high spatial frequency illumination patterns generated by laser interference. This approach provides high resolution but is limited to thin samples such as cultured cells. Using a different strategy for processing raw data and coarser illumination patterns, we imaged through a 150-micrometer-thick coronal section of a mouse brain expressing GFP in a subset of neurons. The resolution reached 144 nm, an improvement of 1.7-fold beyond conventional widefield imaging.

3.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292949

RESUMO

Super-resolution structured illumination microscopy (SR-SIM) is a method in optical fluorescence microscopy which is suitable for imaging a wide variety of cells and tissues in biological and biomedical research. Typically, SIM methods use high spatial frequency illumination patterns generated by laser interference. This approach provides high resolution but is limited to thin samples such as cultured cells. Using a different strategy for processing the raw data and coarser illumination patterns, we imaged through a 150 µm thick coronal section of a mouse brain expressing GFP in a subset of neurons. The resolution reached 144 nm, an improvement of 1.7 fold beyond conventional widefield imaging.

4.
Anal Chem ; 94(44): 15297-15306, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36279588

RESUMO

Raman spectroscopy, combined with machine learning techniques, holds great promise for many applications as a rapid, sensitive, and label-free identification method. Such approaches perform well when classifying spectra of chemical species that were encountered during the training phase. That is, species that are known to the neural network. However, in real-world settings, such as in clinical applications, there will always be substances whose spectra have not yet been taken. When the neural network encounters these new species during the testing phase, the number of false positives becomes uncontrollable, limiting the usefulness of these techniques, especially in public safety applications. To overcome these barriers, we implemented the recently introduced Entropic Open Set and Objectosphere loss functions. To demonstrate the efficacy and efficiency of this approach, we compiled a database of hyperspectral Raman images of 40 chemical species separating them into three class categorizations. The known class consisted of 20 biologically relevant species comprising amino acids, the ignored class was 10 "irrelevant" species comprising bio-related chemicals, and the never seen before class was 10 various chemical species that the neural network had not seen before. We show that this approach not only enables the network to effectively separate the unknown species while preserving high accuracy on the known ones and reducing false positives but also performs better than the current gold standards in machine learning techniques. This opens the door to using Raman spectroscopy, combined with our novel machine learning algorithm, in a variety of practical applications. Availability and implementation: freely available on the web at https://github.com/BalytskyiJaroslaw/RamanOpenSet.git.


Assuntos
Aprendizado de Máquina , Análise Espectral Raman , Análise Espectral Raman/métodos , Redes Neurais de Computação , Algoritmos , Bases de Dados Factuais
5.
Photonics ; 9(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35966275

RESUMO

Fluorescence microscopy provides an unparalleled tool for imaging biological samples. However, producing high-quality volumetric images quickly and without excessive complexity remains a challenge. Here, we demonstrate a four-camera structured illumination microscope (SIM) capable of simultaneously imaging multiple focal planes, allowing for the capture of 3D fluorescent images without any axial movement of the sample. This setup allows for the acquisition of many different 3D imaging modes, including 3D time lapses, high-axial-resolution 3D images, and large 3D mosaics. We imaged mitochondrial motions in live cells, neuronal structure in Drosophila larvae, and imaged up to 130 µm deep into mouse brain tissue. After SIM processing, the resolution measured using one of the four cameras improved from 357 nm to 253 nm when using a 30×/1.05 NA objective.

6.
Nanotechnology ; 33(31)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35350001

RESUMO

Creating sensitive and reproducible substrates for surface-enhanced Raman spectroscopy (SERS) has been a challenge in recent years. While SERS offers significant benefits over traditional Raman spectroscopy, certain hindrances have limited their commercial use, especially in settings where low limits of detection are necessary. We studied a variety of laser-deposited silver microstructured SERS substrates with different morphology as a means to optimize analyte detection. We found that using a 405 nm laser to deposit lines of silver nanoparticles (AgNPS) from a 2 mM silver nitrate and sodium citrate solution offered not only the best enhancement, but also the most consistent and reproducible substrates. We also found that the probability of deposition by laser was wavelength dependent and that longer wavelengths were less likely to deposit than shorter wavelengths. This work offers a better understanding of the laser deposition process as well as how substrate shape and structure effect SERS signals.

7.
J Imaging ; 7(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34460678

RESUMO

Magnetic particles have been evaluated for their biomedical applications as a drug delivery system to treat asthma and other lung diseases. In this study, ferromagnetic barium hexaferrite (BaFe12O19) and iron oxide (Fe3O4) particles were suspended in water or glycerol, as glycerol can be 1000 times more viscous than water. The particle concentration was 2.50 mg/mL for BaFe12O19 particle clusters and 1.00 mg/mL for Fe3O4 particle clusters. The magnetic particle cluster cross-sectional area ranged from 15 to 1000 µµm2, and the particle cluster diameter ranged from 5 to 45 µµm. The magnetic particle clusters were exposed to oscillating or rotating magnetic fields and imaged with an optical microscope. The oscillation frequency of the applied magnetic fields, which was created by homemade wire spools inserted into an optical microscope, ranged from 10 to 180 Hz. The magnetic field magnitudes varied from 0.25 to 9 mT. The minimum magnetic field required for particle cluster rotation or oscillation in glycerol was experimentally measured at different frequencies. The results are in qualitative agreement with a simplified model for single-domain magnetic particles, with an average deviation from the model of 1.7 ± 1.3. The observed difference may be accounted for by the fact that our simplified model does not include effects on particle cluster motion caused by randomly oriented domains in multi-domain magnetic particle clusters, irregular particle cluster size, or magnetic anisotropy, among other effects.

8.
Gigascience ; 10(5)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33954794

RESUMO

BACKGROUND: Fluorescence microscopy is an important technique in many areas of biological research. Two factors that limit the usefulness and performance of fluorescence microscopy are photobleaching of fluorescent probes during imaging and, when imaging live cells, phototoxicity caused by light exposure. Recently developed methods in machine learning are able to greatly improve the signal-to-noise ratio of acquired images. This allows researchers to record images with much shorter exposure times, which in turn minimizes photobleaching and phototoxicity by reducing the dose of light reaching the sample. FINDINGS: To use deep learning methods, a large amount of data is needed to train the underlying convolutional neural network. One way to do this involves use of pairs of fluorescence microscopy images acquired with long and short exposure times. We provide high-quality datasets that can be used to train and evaluate deep learning methods under development. CONCLUSION: The availability of high-quality data is vital for training convolutional neural networks that are used in current machine learning approaches.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Razão Sinal-Ruído
9.
Gigascience ; 9(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32285910

RESUMO

BACKGROUND: Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. FINDINGS: Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. CONCLUSION: The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology.


Assuntos
Teorema de Bayes , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Algoritmos , Artefatos , Humanos , Microscopia de Fluorescência
10.
J Imaging ; 5(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31360699

RESUMO

Total internal reflection fluorescence microscopy with polarized excitation (P-TIRF) can be used to image nanoscale curvature phenomena in live cells. We used P-TIRF to visualize rat basophilic leukemia cells (RBL-2H3 cells) primed with fluorescent anti-dinitrophenyl (anti-DNP) immunoglobulin E (IgE) coming into contact with a supported lipid bilayer containing mobile, monovalent DNP, modeling an immunological synapse. The spatial relationship of the IgE-bound high affinity IgE receptor (FcεRI) to the ratio image of P-polarized excitation and S-polarized excitation was analyzed. These studies help correlate the dynamics of cell surface molecules with the mechanical properties of the plasma membrane during synapse formation.

11.
Nat Methods ; 16(6): 561, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31097821

RESUMO

In the version of this paper originally published, Figure 4a contained errors that were introduced during typesetting. The bottom 11° ThunderSTORM image is an xz view but was incorrectly labeled as xy, and the low x-axis value in the four line profiles was incorrectly set as -60 instead of -50. These errors have been corrected in the PDF and HTML versions of the paper.

12.
Nat Methods ; 16(5): 387-395, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962624

RESUMO

With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Software , Algoritmos
13.
Gigascience ; 8(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351383

RESUMO

Background: Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Findings: Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing. Conclusions: Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Algoritmos , Animais , Teorema de Bayes , Linhagem Celular , Células Hep G2 , Humanos , Microscopia de Fluorescência , Coelhos , Software
14.
Gigascience ; 7(3): 1-10, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361123

RESUMO

Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusions: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.


Assuntos
Receptores de Fatores de Crescimento/isolamento & purificação , Imagem Individual de Molécula/métodos , Algoritmos , Proteínas de Bactérias/química , Corantes Fluorescentes/química , Humanos , Proteínas Luminescentes/química , Receptores de Fatores de Crescimento/química
15.
BMC Biol ; 15(1): 27, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28372543

RESUMO

BACKGROUND: Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters. RESULTS: In live experiments, no fusion events were observed between the mitosomes in G. intestinalis. Moreover, the organelles were highly prone to becoming heterogeneous. This suggests that fusion is either much less frequent or even absent in mitosome dynamics. Unlike in mitochondria, division of the mitosomes was absolutely synchronized and limited to mitosis. The association of the nuclear and the mitosomal division persisted during the encystation of the parasite. During the segregation of the divided mitosomes, the subset of the organelles between two G. intestinalis nuclei had a prominent role. Surprisingly, the sole dynamin-related protein of the parasite seemed not to be involved in mitosomal division. However, throughout the cell cycle, mitosomes associated with the endoplasmic reticulum (ER), although none of the known ER-tethering complexes was present. Instead, the ER-mitosome interface was occupied by the lipid metabolism enzyme long-chain acyl-CoA synthetase 4. CONCLUSIONS: This study provides the first report on the dynamics of mitosomes. We show that together with the loss of metabolic complexity of mitochondria, mitosomes of G. intestinalis have uniquely streamlined their dynamics by harmonizing their division with mitosis. We propose that this might be a strategy of G. intestinalis to maintain a stable number of organelles during cell propagation. The lack of mitosomal fusion may also be related to the secondary reduction of the organelles. However, as there are currently no reports on mitochondrial fusion in the whole Excavata supergroup, it is possible that the absence of mitochondrial fusion is an ancestral trait common to all excavates.


Assuntos
Retículo Endoplasmático/metabolismo , Giardia lamblia/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Evolução Biológica , Coenzima A Ligases/metabolismo , Dinaminas/metabolismo , Giardia lamblia/citologia , Interfase
16.
Bioinformatics ; 32(2): 318-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26446133

RESUMO

UNLABELLED: SIMToolbox is an open-source, modular set of functions for MATLAB equipped with a user-friendly graphical interface and designed for processing two-dimensional and three-dimensional data acquired by structured illumination microscopy (SIM). Both optical sectioning and super-resolution applications are supported. The software is also capable of maximum a posteriori probability image estimation (MAP-SIM), an alternative method for reconstruction of structured illumination images. MAP-SIM can potentially reduce reconstruction artifacts, which commonly occur due to refractive index mismatch within the sample and to imperfections in the illumination. AVAILABILITY AND IMPLEMENTATION: SIMToolbox, example data and the online documentation are freely accessible at http://mmtg.fel.cvut.cz/SIMToolbox. CONTACT: ghagen@uccs.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Fluorescência , Iluminação/métodos , Microscopia de Fluorescência/métodos , Software , Células Hep G2 , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos
17.
Bioinformatics ; 30(16): 2389-90, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771516

RESUMO

UNLABELLED: ThunderSTORM is an open-source, interactive and modular plug-in for ImageJ designed for automated processing, analysis and visualization of data acquired by single-molecule localization microscopy methods such as photo-activated localization microscopy and stochastic optical reconstruction microscopy. ThunderSTORM offers an extensive collection of processing and post-processing methods so that users can easily adapt the process of analysis to their data. ThunderSTORM also offers a set of tools for creation of simulated data and quantitative performance evaluation of localization algorithms using Monte Carlo simulations. AVAILABILITY AND IMPLEMENTATION: ThunderSTORM and the online documentation are both freely accessible at https://code.google.com/p/thunder-storm/.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Software , Algoritmos , Microscopia de Fluorescência/métodos , Método de Monte Carlo
18.
Bioinformatics ; 30(11): 1609-17, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24526711

RESUMO

MOTIVATION: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. RESULTS: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately. AVAILABILITY AND IMPLEMENTATION: The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge.


Assuntos
Algoritmos , Rastreamento de Células/métodos , Benchmarking , Microscopia de Fluorescência
19.
Opt Express ; 22(24): 29805-17, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606910

RESUMO

We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluorescent samples of different thickness, labeling density and noise levels. The method provides good suppression of out of focus light, improves spatial resolution, and allows reconstruction of both 2D and 3D images of cells even in the case of weak signals. The method can be used to process both optical sectioning and super-resolution structured illumination microscopy data to create high quality super-resolution images.


Assuntos
Algoritmos , Imageamento Tridimensional , Iluminação , Microscopia/métodos , Probabilidade , Animais , Bovinos , Drosophila melanogaster/citologia , Fluorescência , Células Hep G2 , Humanos , Pólen/citologia , Razão Sinal-Ruído
20.
Opt Express ; 22(25): 31263-76, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607074

RESUMO

Single-molecule localization microscopy methods offer high spatial resolution, but they are not always suitable for live cell imaging due to limited temporal resolution. One strategy is to increase the density of photoactivated molecules present in each image, however suitable analysis algorithms for such data are still lacking. We present 3denseSTORM, a new algorithm for localization microscopy which is able to recover 2D or 3D super-resolution images from a sequence of diffraction limited images with high densities of photoactivated molecules. The algorithm is based on sparse support recovery and uses a Poisson noise model, which becomes critical in low-light conditions. For 3D data reconstruction we use the astigmatism and biplane imaging methods. We derive the theoretical resolution limits of the method and show examples of image reconstructions in simulations and in real 2D and 3D biological samples. The method is suitable for fast image acquisition in densely labeled samples and helps facilitate live cell studies with single molecule localization microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...