Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 40(8): 2023-2029, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33798077

RESUMO

Wide-scale adoption of optoacoustic imaging in biology and medicine critically depends on availability of affordable scanners combining ease of operation with optimal imaging performance. Here we introduce LightSpeed: a low-cost real-time volumetric handheld optoacoustic imager based on a new compact software-defined ultrasound digital acquisition platform and a pulsed laser diode. It supports the simultaneous signal acquisition from up to 192 ultrasound channels and provides a hig-bandwidth direct optical link (2x 100G Ethernet) to the host-PC for ultra-high frame rate image acquisitions. We demonstrate use of the system for ultrafast (500Hz) 3D human angiography with a rapidly moving handheld probe. LightSpeed attained image quality comparable with a conventional optoacoustic imaging systems employing bulky acquisition electronics and a Q-switched pulsed laser. Our results thus pave the way towards a new generation of compact, affordable and high-performance optoacoustic scanners.


Assuntos
Técnicas Fotoacústicas , Angiografia , Humanos , Lasers , Software , Ultrassonografia
2.
Sensors (Basel) ; 19(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590410

RESUMO

Movement science investigating muscle and tendon functions during locomotion utilizes commercial ultrasound imagers built for medical applications. These limit biomechanics research due to their form factor, range of view, and spatio-temporal resolution. This review systematically investigates the technical aspects of applying ultrasound as a research tool to investigate human and animal locomotion. It provides an overview on the ultrasound systems used and of their operating parameters. We present measured fascicle velocities and discuss the results with respect to operating frame rates during recording. Furthermore, we derive why muscle and tendon functions should be recorded with a frame rate of at least 150 Hz and a range of view of 250 mm. Moreover, we analyze why and how the development of better ultrasound observation devices at the hierarchical level of muscles and tendons can support biomechanics research. Additionally, we present recent technological advances and their possible application. We provide a list of recommendations for the development of a more advanced ultrasound sensor system class targeting biomechanical applications. Looking to the future, mobile, ultrafast ultrasound hardware technologies create immense opportunities to expand the existing knowledge of human and animal movement.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30735991

RESUMO

Digital ultrasound probes integrate the analog front end in the housing of the probe handle and provide a digital interface instead of requiring an expensive coaxial cable harness to connect. Current digital probes target the portable market and perform the bulk of the processing (beamforming) on the probe, which enables the probe to be connected to commodity devices, such as tablets or smartphones, running an ultrasound app to display the image and control the probe. Thermal constraints limit the number of front-end channels as well as the complexity of the processing. This prevents current digital probes to support advanced modalities, such as vector flow or elastography, requiring high-frame-rate imaging. In this paper, we present Light Probe, a digital ultrasound probe, which integrates a 64-channel 100- [Formula: see text] TX/RX front end, including analog-to-digital conversion (up to 32.5 MS/s at 12 bit), and is equipped with an optical high-speed link (26.4 Gb/s) providing sustainable raw samples access to all the channels, which allows the processing to be performed on the connected device without thermal power constraints. By connecting the probe to a graphics processing unit-equipped PC, we demonstrate the flexibility of software-defined B-mode imaging using conventional and ultrafast methods. We achieve plane-wave and synthetic aperture imaging with frame rates from 30 up to 500 Hz consuming between 5.6 and 10.7 W. By using a combination of power and thermal management techniques, we demonstrate that the probe can remain within operating temperature limits even without active cooling, while never having to turn the probe off for cooling, hence providing a consistent quality of service for the operator.

4.
IEEE Trans Biomed Circuits Syst ; 11(4): 815-831, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28574367

RESUMO

Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.


Assuntos
Imageamento Tridimensional , Ultrassonografia , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...