Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 274(5291): 1357-9, 1996 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-8910272

RESUMO

Available thermodynamic data and seismic models favor perovskite (MgSiO3) as the stable phase in the mantle. MgSiO3 was heated at temperatures from 1900 to 3200 kelvin with a Nd-YAG laser in diamond-anvil cells to study the phase relations at pressures from 45 to 100 gigapascals. The quenched products were studied with synchrotron x-ray radiation. The results show that MgSiO3 broke down to a mixture of MgO (periclase) and SiO2 (stishovite or an unquenchable polymorph) at pressures from 58 to 85 gigapascals. These results imply that perovskite may not be stable in the lower mantle and that it might be necessary to reconsider the compositional and density models of the mantle.

2.
Science ; 269(5231): 1703-4, 1995 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-17821640

RESUMO

X-ray synchrotron experiments with in situ laser heating of iron in a diamond-anvil cell show that the high-pressure epsilon phase, a hexagonal close-packed (hcp) structure, transforms to another phase (possibly a polytype double-layer hcp) at a pressure of about 38 gigapascals and at temperatures between 1200 and 1500 kelvin. This information has implications for the phase relations of iron in Earth's core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...