Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(35): eabb4641, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923641

RESUMO

Minimally invasive surgeries have numerous advantages, yet complications may arise from limited knowledge about the anatomical site targeted for the delivery of therapy. Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure for treating aortic stenosis. Here, we demonstrate multimaterial three-dimensional printing of patient-specific soft aortic root models with internally integrated electronic sensor arrays that can augment testing for TAVR preprocedural planning. We evaluated the efficacies of the models by comparing their geometric fidelities with postoperative data from patients, as well as their in vitro hemodynamic performances in cases with and without leaflet calcifications. Furthermore, we demonstrated that internal sensor arrays can facilitate the optimization of bioprosthetic valve selections and in vitro placements via mapping of the pressures applied on the critical regions of the aortic anatomies. These models may pave exciting avenues for mitigating the risks of postoperative complications and facilitating the development of next-generation medical devices.

3.
Adv Mater Technol ; 3(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29608202

RESUMO

The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.

4.
Annu Rev Anal Chem (Palo Alto Calif) ; 11(1): 287-306, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29589961

RESUMO

Medical errors are a major concern in clinical practice, suggesting the need for advanced surgical aids for preoperative planning and rehearsal. Conventionally, CT and MRI scans, as well as 3D visualization techniques, have been utilized as the primary tools for surgical planning. While effective, it would be useful if additional aids could be developed and utilized in particularly complex procedures involving unusual anatomical abnormalities that could benefit from tangible objects providing spatial sense, anatomical accuracy, and tactile feedback. Recent advancements in 3D printing technologies have facilitated the creation of patient-specific organ models with the purpose of providing an effective solution for preoperative planning, rehearsal, and spatiotemporal mapping. Here, we review the state-of-the-art in 3D printed, patient-specific organ models with an emphasis on 3D printing material systems, integrated functionalities, and their corresponding surgical applications and implications. Prior limitations, current progress, and future perspectives in this important area are also broadly discussed.


Assuntos
Cirurgia Geral/métodos , Modelos Anatômicos , Impressão Tridimensional , Humanos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
5.
Extreme Mech Lett ; 21: 1-8, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-32596434

RESUMO

Soft robotics is an emerging field enabled by advances in the development of soft materials with properties commensurate to their biological counterparts, for the purpose of reproducing locomotion and other distinctive capabilities of active biological organisms. The development of soft actuators is fundamental to the advancement of soft robots and bio-inspired machines. Among the different material systems incorporated in the fabrication of soft devices, ionic hydrogel-elastomer hybrids have recently attracted vast attention due to their favorable characteristics, including their analogy with human skin. Here, we demonstrate that this hybrid material system can be 3D printed as a soft dielectric elastomer actuator (DEA) with a unimorph configuration that is capable of generating high bending motion in response to an applied electrical stimulus. We characterized the device actuation performance via applied (i) ramp-up electrical input, (ii) cyclic electrical loading, and (iii) payload masses. A maximum vertical tip displacement of 9.78 ± 2.52 mm at 5.44 kV was achieved from the tested 3D printed DEAs. Furthermore, the nonlinear actuation behavior of the unimorph DEA was successfully modeled using analytical energetic formulation and a finite element method (FEM).

6.
Nat Biomed Eng ; 1(10): 775-776, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31015595
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...