Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 5(1): 80, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29126430

RESUMO

Blast-related traumatic brain injury (TBI) has been a common cause of injury in the recent conflicts in Iraq and Afghanistan. Blast waves can damage blood vessels, neurons, and glial cells within the brain. Acutely, depending on the blast energy, blast wave duration, and number of exposures, blast waves disrupt the blood-brain barrier, triggering microglial activation and neuroinflammation. Recently, there has been much interest in the role that ongoing neuroinflammation may play in the chronic effects of TBI. Here, we investigated whether chronic neuroinflammation is present in a rat model of repetitive low-energy blast exposure. Six weeks after three 74.5-kPa blast exposures, and in the absence of hemorrhage, no significant alteration in the level of microglia activation was found. At 6 weeks after blast exposure, plasma levels of fractalkine, interleukin-1ß, lipopolysaccharide-inducible CXC chemokine, macrophage inflammatory protein 1α, and vascular endothelial growth factor were decreased. However, no differences in cytokine levels were detected between blast-exposed and control rats at 40 weeks. In brain, isolated changes were seen in levels of selected cytokines at 6 weeks following blast exposure, but none of these changes was found in both hemispheres or at 40 weeks after blast exposure. Notably, one animal with a focal hemorrhagic tear showed chronic microglial activation around the lesion 16 weeks post-blast exposure. These findings suggest that focal hemorrhage can trigger chronic focal neuroinflammation following blast-induced TBI, but that in the absence of hemorrhage, chronic neuroinflammation is not a general feature of low-level blast injury.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Citocinas/metabolismo , Encefalite/etiologia , Hemorragias Intracranianas/complicações , Hemorragias Intracranianas/etiologia , Animais , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Mutação/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Science ; 341(6146): 1237905, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23828890

RESUMO

DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.


Assuntos
Citosina/análogos & derivados , Metilação de DNA , Epigênese Genética , Lobo Frontal/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , 5-Metilcitosina/metabolismo , Adulto , Animais , Sequência de Bases , Sequência Conservada , Citosina/metabolismo , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Inativação do Cromossomo X/genética
3.
Nucleic Acids Res ; 40(Database issue): D1245-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140101

RESUMO

MethylomeDB (http://epigenomics.columbia.edu/methylomedb/index.html) is a new database containing genome-wide brain DNA methylation profiles. DNA methylation is an important epigenetic mark in the mammalian brain. In human studies, aberrant DNA methylation alterations have been associated with various neurodevelopmental and neuropsychiatric disorders such as schizophrenia, and depression. In this database, we present methylation profiles of carefully selected non-psychiatric control, schizophrenia, and depression samples. We also include data on one mouse forebrain sample specimen to allow for cross-species comparisons. In addition to our DNA methylation data generated in-house, we have and will continue to include published DNA methylation data from other research groups with the focus on brain development and function. Users can view the methylation data at single-CpG resolution with the option of wiggle and microarray formats. They can also download methylation data for individual samples. MethylomeDB offers an important resource for research into brain function and behavior. It provides the first source of comprehensive brain methylome data, encompassing whole-genome DNA methylation profiles of human and mouse brain specimens that facilitate cross-species comparative epigenomic investigations, as well as investigations of schizophrenia and depression methylomes.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Bases de Dados de Ácidos Nucleicos , Animais , Epigênese Genética , Genômica , Humanos , Camundongos , Interface Usuário-Computador
4.
Epigenetics ; 6(11): 1308-18, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22048252

RESUMO

DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease.


Assuntos
Encéfalo/metabolismo , Ilhas de CpG , Metilação de DNA , Evolução Molecular , Perfilação da Expressão Gênica , Animais , Epigenômica , Feminino , Genoma , Genômica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
5.
Bioinformatics ; 27(16): 2296-7, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21685051

RESUMO

SUMMARY: Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. AVAILABILITY AND IMPLEMENTATION: Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. CONTACT: fgh3@columbia.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Software , Ilhas de CpG , Metilases de Modificação do DNA , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...