Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 9(5): 483-495.e10, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31759947

RESUMO

Human pluripotent stem cells (hPSCs) have the intrinsic ability to self-organize into complex multicellular organoids that recapitulate many aspects of tissue development. However, robustly directing morphogenesis of hPSC-derived organoids requires novel approaches to accurately control self-directed pattern formation. Here, we combined genetic engineering with computational modeling, machine learning, and mathematical pattern optimization to create a data-driven approach to control hPSC self-organization by knock down of genes previously shown to affect stem cell colony organization, CDH1 and ROCK1. Computational replication of the in vitro system in silico using an extended cellular Potts model enabled machine learning-driven optimization of parameters that yielded emergence of desired patterns. Furthermore, in vitro the predicted experimental parameters quantitatively recapitulated the in silico patterns. These results demonstrate that morphogenic dynamics can be accurately predicted through model-driven exploration of hPSC behaviors via machine learning, thereby enabling spatial control of multicellular patterning to engineer human organoids and tissues. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.


Assuntos
Biologia Computacional/métodos , Células-Tronco Pluripotentes/classificação , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Simulação por Computador , Humanos , Aprendizado de Máquina , Células-Tronco Pluripotentes/fisiologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
2.
Appl Opt ; 48(29): 5497-501, 2009 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-19823232

RESUMO

When a thin film that is prepared in a step form on a substrate and coated uniformly with a reflective material is illuminated by a parallel coherent beam of monochromatic light, the Fresnel diffraction fringes are formed on a screen perpendicular to the reflected beam. The visibility of the fringes depends on film thickness, angle of incidence, and light wavelength. Measuring visibility versus incident angle provides the film thickness with an accuracy of a few nanometers. The technique is easily applicable and it covers a wide range of thicknesses with highly reliable results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...