Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38592245

RESUMO

Rectal examination through proctoscopy or rigid sigmoidoscopy is a common investigation in clinical practice. It is an important diagnostic tool for the workup and management of anorectal pathologies. Performing the examination can be daunting not only for patients but also for junior doctors. There are associated risks with the procedure, such as pain, diagnostic failure, and perforation of the bowel. Simulation-based training is recognised as an important adjunct in clinical education. It allows students and doctors to practice skills and techniques at their own pace in a risk-free environment. These skills can then be transferred to and developed further in clinical practice. There is extensive research published regarding the role of simulation-based training in endoscopy, however, we identified no published study regarding simulation-based training in rigid sigmoidoscopy or proctoscopy. This study aims to establish the initial face, content, and construct validity of a tool-based visual anorectal examination advanced simulator model for proctoscopy and rigid sigmoidoscopy. This innovative, highly realistic simulated environment aims to enhance the training of healthcare professionals and improve the efficiency of detecting and diagnosing distal colorectal disease.

2.
Pediatr Surg Int ; 38(1): 133-141, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34476537

RESUMO

BACKGROUND: The role of simulation training in paediatric surgery is expanding as more simulation devices are designed and validated. We aimed to conduct a training needs assessment of UK paediatric surgical trainees to prioritise procedures for simulation, and to validate a novel 3D-printed simulation model for oesophageal atresia and tracheo-oesophageal fistula (OA-TOF) repair. METHODS: A questionnaire was sent to UK trainee paediatric surgeons surveying the availability and utility of simulation. The operation ranked as most useful to simulate was OA-TOF repair. 3D-printing techniques were used to build an OA-TOF model. Content, face and construct validity was assessed by 40 paediatric surgeons of varying experience. RESULTS: Thirty-four paediatric surgeons completed the survey; 79% had access to surgical simulation at least monthly, and 47% had access to paediatric-specific resources. Perceived utility of simulation was 4.1/5. Validation of open OA-TOF repair was conducted by 40 surgeons. Participants rated the model as useful 4.9/5. Anatomical realism was scored 4.2/5 and surgical realism 3.9/5. The model was able to discriminate between experienced and inexperienced surgeons. CONCLUSION: UK paediatric surgeons voted OA-TOF repair as the most useful procedure to simulate. In response we have developed and validated an affordable 3D-printed simulation model for open OA-TOF repair.


Assuntos
Atresia Esofágica , Esofagoplastia , Fístula Traqueoesofágica , Criança , Atresia Esofágica/cirurgia , Humanos , Impressão Tridimensional , Fístula Traqueoesofágica/cirurgia
3.
JMIR Rehabil Assist Technol ; 7(2): e17289, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808932

RESUMO

BACKGROUND: Performing physiotherapy exercises in front of a physiotherapist yields qualitative assessment notes and immediate feedback. However, practicing the exercises at home lacks feedback on how well patients are performing the prescribed tasks. The absence of proper feedback might result in patients performing the exercises incorrectly, which could worsen their condition. We present an approach to generate performance scores to enable tracking the progress by both the patient at home and the physiotherapist in the clinic. OBJECTIVE: This study aims to propose the use of 2 machine learning algorithms, dynamic time warping (DTW) and hidden Markov model (HMM), to quantitatively assess the patient's performance with respect to a reference. METHODS: Movement data were recorded using a motion sensor (Kinect V2), capable of detecting 25 joints in the human skeleton model, and were compared with those of a reference. A total of 16 participants were recruited to perform 4 different exercises: shoulder abduction, hip abduction, lunge, and sit-to-stand exercises. Their performance was compared with that of a physiotherapist as a reference. RESULTS: Both algorithms showed a similar trend in assessing participant performance. However, their sensitivity levels were different. Although DTW was more sensitive to small changes, HMM captured a general view of the performance, being less sensitive to the details. CONCLUSIONS: The chosen algorithms demonstrated their capacity to objectively assess the performance of physical therapy. HMM may be more suitable in the early stages of a physiotherapy program to capture and report general performance, whereas DTW could be used later to focus on the details. The scores enable the patient to monitor their daily performance. They can also be reported back to the physiotherapist to track and assess patient progress, provide feedback, and adjust the exercise program if needed.

4.
J Med Internet Res ; 22(8): e18637, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32788146

RESUMO

BACKGROUND: Digital rectal examination is a difficult examination to learn and teach because of limited opportunities for practice; however, the main challenge is that students and tutors cannot see the finger when it is palpating the anal canal and prostate gland inside the patients. OBJECTIVE: This paper presents an augmented reality system to be used with benchtop models commonly available in medical schools with the aim of addressing the problem of lack of visualization. The system enables visualization of the examining finger, as well as of the internal organs when performing digital rectal examinations. Magnetic tracking sensors are used to track the movement of the finger, and a pressure sensor is used to monitor the applied pressure. By overlaying a virtual finger on the real finger and a virtual model on the benchtop model, students can see through the examination and finger maneuvers. METHODS: The system was implemented in the Unity game engine (Unity Technologies) and uses a first-generation HoloLens (Microsoft Inc) as an augmented reality device. To evaluate the system, 19 participants (9 clinicians who routinely performed digital rectal examinations and 10 medical students) were asked to use the system and answer 12 questions regarding the usefulness of the system. RESULTS: The system showed the movement of an examining finger in real time with a frame rate of 60 fps on the HoloLens and accurately aligned the virtual and real models with a mean error of 3.9 mm. Users found the movement of the finger was realistic (mean 3.9, SD 1.2); moreover, they found the visualization of the finger and internal organs were useful for teaching, learning, and assessment of digital rectal examinations (finger: mean 4.1, SD 1.1; organs: mean 4.6, SD 0.8), mainly targeting a novice group. CONCLUSIONS: The proposed augmented reality system was designed to improve teaching and learning of digital rectal examination skills by providing visualization of the finger and internal organs. The initial user study proved its applicability and usefulness.


Assuntos
Realidade Aumentada , Competência Clínica/normas , Exame Retal Digital/normas , Educação Médica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...