Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 118(4): 686-698, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27463539

RESUMO

Epithelial morphogenesis in the mammary gland proceeds as a consequence of complex cell behaviors including apoptotic cell death and epithelial-mesenchymal transition (EMT); the extracellular matrix (ECM) protein laminin is crucially involved. Syntaxins mediate intracellular vesicular fusion, yet certain plasmalemmal members have been shown to possess latent extracellular functions. In this study, the extracellular subpopulation of syntaxin-4, extruded in response to the induction of differentiation or apoptosis in mammary epithelial cells, was detected. Using a tetracycline-repressive transcriptional system and clonal mammary epithelial cells, SCp2, we found that the expression of cell surface syntaxin-4 elicits EMT-like cell behaviors. Intriguingly, these cells did not up-regulate key transcription factors associated with the canonical EMT such as snail, slug, or twist, and repressed translation of E-cadherin. Concurrently, the cells completely evaded the cellular aggregation/rounding triggered by a potent EMT blocker laminin-111. We found that the recombinant form of syntaxin-4 not only bound to laminin but also latched onto the glycosaminoglycan (GAG) side chains of syndecan-1, a laminin receptor that mediates epithelial morphogenesis. Thus, temporal extracellular extrusion of syntaxin-4 emerged as a novel regulatory element for laminin-induced mammary epithelial cell behaviors. J. Cell. Biochem. 118: 686-698, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Laminina/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Proteínas Qa-SNARE/metabolismo , Sindecana-1/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Matriz Extracelular/metabolismo , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos ICR , Morfogênese/fisiologia , Gravidez , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sindecana-1/química
2.
Mol Med ; 21: 77-86, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25611434

RESUMO

In the skin epidermis, keratinocytes undergo anchorage-dependent cornification, which gives rise to stratified multilayers, each with a distinct differentiation feature. The active formation of the cornified cell envelope (CCE), an important element in the skin barrier, occurs in keratinocytes of the upper epidermal layers and impacts their terminal differentiation. In the present study, we identified the extracellularly extruded syntaxin-4 as a potent differentiation regulator of epidermal keratinocytes. We found that differentiation stimuli led to the acceleration of syntaxin-4 exposure at the keratinocyte cell surface and that the artificial control of extracellular syntaxin-4, either by the forced expression of several syntaxin-4 mutants with structural alterations at the putative functional core site (AIEPQK), or by using antagonistic circular peptides containing this core sequence, dramatically influenced the CCE formation, with spatial misexpression of TGase1 and involucrin. We also found that the topical application of a peptide that exerted the most prominent antagonistic activity for syntaxin-4, named ST4n1, evidently prevented the formation of the hyperplastic and hyperkeratotic epidermis generated by physical irritation in HR-1 mice skin. Collectively, these results demonstrate that extracellularly extruded syntaxin-4 is a potent regulator of CCE differentiation, and that ST4n1 has potential as a clinically applicable reagent for keratotic skin lesions.


Assuntos
Células Epidérmicas , Epiderme/metabolismo , Queratinócitos/metabolismo , Proteínas Qa-SNARE/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Membrana Celular/metabolismo , Espaço Extracelular , Feminino , Humanos , Queratinócitos/citologia , Camundongos , Mutação , Transporte Proteico , Proteínas Qa-SNARE/genética , Transglutaminases/metabolismo
3.
Exp Cell Res ; 327(1): 146-55, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24881817

RESUMO

Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPß, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPß gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPß gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Glândulas Mamárias Animais/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Membrana Basal/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Colágeno/genética , Colágeno/metabolismo , Combinação de Medicamentos , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica/genética , Laminina/genética , Laminina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Isoformas de Proteínas/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Exp Dermatol ; 22(12): 845-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24171760

RESUMO

Ultra-violet B (UVB)-induced oxidative stress crucially perturbs the epidermal homeostasis, and the skin is endowed with protective mechanisms to take action against such damage. Here, we show the possible involvement of t-SNARE protein syntaxin3, a membrane fusion mediator of cytoplasmic vesicles, and which is released from dying keratinocytes, to play a role in this response. UVB irradiation, which generates reactive oxidative stress in cells, was shown to lead to the keratinocyte cell death accompanied by a release of cytoplasmic syntaxin3. We found that such extracellularly sourced syntaxin3 completely blocked the processing of a crucial effector for apoptotic cell death, caspase-3, and thus facilitated the survival of keratinocytes damaged by oxidative stress. These results demonstrate the latent prosurvival function of syntaxin3 and underline the importance of intracellular molecular elements for the maintenance of homeostasis in epidermal keratinocytes.


Assuntos
Apoptose , Epiderme/metabolismo , Regulação da Expressão Gênica , Queratinócitos/citologia , Proteínas Qa-SNARE/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Citoplasma/metabolismo , Citosol/metabolismo , Perfilação da Expressão Gênica , Homeostase , Humanos , Camundongos , Estresse Oxidativo , Pele/metabolismo , Raios Ultravioleta
5.
Cell Tissue Res ; 354(2): 581-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23884628

RESUMO

The proteins in the syntaxin family are known to mediate fusion of cytoplasmic vesicles to the target membrane, yet subpopulations of certain syntaxins, including syntaxin4, translocate across the cell membrane in response to external stimuli. Here, we show that extracellularly presented syntaxin4 impacts cell behavior and differentiation in teratocarcinoma F9 cells. While undifferentiated F9 cells extruded a small subpopulation of extracellular syntaxin4 at the lateral cell membrane, the induction of differentiation with all-trans retinoic acid (RA) abolished this localized expression pattern. We found that the cells that were stimulated in a non-directional fashion by extracellular syntaxin4 displayed a flattened shape and retained a substrate-bound morphology even under a long-term, serum-starved cultivation. Such a cellular response was also elicited by a circular peptide composed of the potential functional core of syntaxin4 (AIEPQK; amino acid residues 103~108) (ST4n1). While the proliferation and metabolism were not affected in these cells, cell-cell interaction became weakened and the expression of vinculin, a regulator of both intercellular and cell-substrate adhesion molecules, was altered. We also found that the expressions of several differentiation markers were up-regulated in cells stimulated with extracellular syntaxin4 and that syntaxin3, another family member, was most prominent. Intriguingly, forced expression of syntaxin3 induced the spread morphology in F9 cells, indicating that syntaxin3 partly mediates the function of extracellular syntaxin4. These results demonstrate the involvement of a non-directional stimulation of extracellular syntaxin4 in the functional and morphological differentiation of F9 cells.


Assuntos
Proteínas Qa-SNARE/metabolismo , Teratocarcinoma/metabolismo , Teratocarcinoma/patologia , Tretinoína/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Tretinoína/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...