Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38832139

RESUMO

Our aim was to describe shifts in autumn and winter harvest distributions of three species of dabbling ducks (blue-winged teal [Spatula discors], mallard [Anas platyrhynchos], and northern pintail [Anas acuta]) in the Central and Mississippi flyways of North America during 1960-2019. We measured shifts in band recovery distributions corrected for changes in hunting season dates and zones by using kernel density estimators to calculate 10 distributional metrics. We then assessed interannual and intraspecific variation by comparing species-specific changes in distributional metrics for 4 months (October-January) and three geographically based subpopulations. During 1960-2019, band recovery distributions shifted west- and southwards (blue-winged teal) or east- and northwards (mallard and northern pintail) by one hundred to several hundred kilometers. For all three species, the broad (95% isopleth) and core distributions (50% isopleth) showed widespread decreases in overlap and increases in relative area compared to a 1960-1979 baseline period. Shifts in band recovery distributions varied by month, with southward shifts for blue-winged teal most pronounced in October and northward shifts for mallard and northern pintail greatest during December and January. Finally, distributional metric response varied considerably among mallard subpopulations, including 2-4-fold differences in longitude, latitude, and overlap, whereas differences among subpopulations were minimal for blue-winged teal and northern pintail. Our findings support the popular notion that winter (December-January) distributions of duck species have shifted north; however, the extent and direction of distributional changes vary among species and subpopulations. Long-term distributional changes are therefore complex and summarizing shifts across species, months, or subpopulations could mask underlying finer-scale patterns that are important to habitat conservation and population management. A detailed understanding of how species distributions have changed over time will help quantify important drivers of species occurrence, identify habitat management options, and could inform decisions on where to focus conservation or restoration efforts.

2.
Transl Anim Sci ; 8: txae076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764467

RESUMO

Waterfowl are housed in captivity for research studies that are infeasible in the wild. Accommodating the unique requirements of semi-aquatic species in captivity while meeting experimental design criteria for research questions can be challenging and may have unknown effects on animal health. Thus, testing and standardizing best husbandry and care practices for waterfowl is necessary to facilitate proper husbandry and humane care while ensuring reliable and repeatable research results. To inform husbandry practices for captive-reared and wild-caught lesser scaup (Aythya affinis; hereafter, scaup), we assessed body mass and fat composition across two different aspects of husbandry, source population (captive-reared or wild caught), and housing densities (birds/m2). Our results suggest that housing scaup at low densities (≤0.6 m2/bird, P = 0.049) relative to other species can minimize negative health effects. Captive-reared scaup were heavier (P = 0.027) with greater body fat (P < 0.001) and exhibited fewer signs of stress during handling than wild-caught scaup. In our experience, scaup which are captive-reared from eggs collected in the wild were better for long-term captivity studies as they maintained body mass between and recovered lost body mass following trials. Researchers would benefit from carefully evaluating the tradeoffs of using short- and long-term captive methods on their research question before designing projects, husbandry practices, and housing facilities for waterfowl.

3.
Ecol Appl ; 34(3): e2952, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417451

RESUMO

Animals balance costs of antipredator behaviors with resource acquisition to minimize hunting and other mortality risks and maximize their physiological condition. This inherent trade-off between forage abundance, its quality, and mortality risk is intensified in human-dominated landscapes because fragmentation, habitat loss, and degradation of natural vegetation communities is often coupled with artificially enhanced vegetation (i.e., food plots), creating high-risk, high-reward resource selection decisions. Our goal was to evaluate autumn-winter resource selection trade-offs for an intensively hunted avian generalist. We hypothesized human access was a reliable cue for hunting predation risk. Therefore, we predicted resource selection patterns would be spatiotemporally dependent upon levels of access and associated perceived risk. Specifically, we evaluated resource selection of local-scale flights between diel periods for 426 mallards (Anas platyrhynchos) relative to wetland type, forage quality, and differing levels of human access across hunting and nonhunting seasons. Mallards selected areas that prohibited human access and generally avoided areas that allowed access diurnally, especially during the hunting season. Mallards compensated by selecting for high-energy and greater quality foraging patches on allowable human access areas nocturnally when they were devoid of hunters. Postseason selection across human access gradients did not return to prehunting levels immediately, perhaps suggesting a delayed response to reacclimate to nonhunted activities and thus agreeing with the assessment mismatch hypothesis. Last, wetland availability and human access constrained selection for optimal natural forage quality (i.e., seed biomass and forage productivity) diurnally during preseason and hunting season, respectively; however, mallards were freed from these constraints nocturnally during hunting season and postseason periods. Our results suggest risk-avoidance of human accessible (i.e., hunted) areas is a primary driver of resource selection behaviors by mallards and could be a local to landscape-level process influencing distributions, instead of forage abundance and quality, which has long-been assumed by waterfowl conservation planners in North America. Broadly, even an avian generalist, well adapted to anthropogenic landscapes, avoids areas where hunting and human access are allowed. Future conservation planning and implementation must consider management for recreational access (i.e., people) equally important as foraging habitat management for wintering waterfowl.


Assuntos
Patos , Ecossistema , Animais , Humanos , Biomassa , Patos/fisiologia , Áreas Alagadas , Comportamento Predatório
4.
Sci Rep ; 13(1): 14473, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660131

RESUMO

Avian influenza viruses pose a threat to wildlife and livestock health. The emergence of highly pathogenic avian influenza (HPAI) in wild birds and poultry in North America in late 2021 was the first such outbreak since 2015 and the largest outbreak in North America to date. Despite its prominence and economic impacts, we know relatively little about how HPAI spreads in wild bird populations. In January 2022, we captured 43 mallards (Anas platyrhynchos) in Tennessee, USA, 11 of which were actively infected with HPAI. These were the first confirmed detections of HPAI H5N1 clade 2.3.4.4b in the Mississippi Flyway. We compared movement patterns of infected and uninfected birds and found no clear differences; infected birds moved just as much during winter, migrated slightly earlier, and migrated similar distances as uninfected birds. Infected mallards also contacted and shared space with uninfected birds while on their wintering grounds, suggesting ongoing transmission of the virus. We found no differences in body condition or survival rates between infected and uninfected birds. Together, these results show that HPAI H5N1 clade 2.3.4.4b infection was unrelated to body condition or movement behavior in mallards infected at this location during winter; if these results are confirmed in other seasons and as HPAI H5N1 continues to evolve, they suggest that these birds could contribute to the maintenance and dispersal of HPAI in North America. Further research on more species across larger geographic areas and multiple seasons would help clarify potential impacts of HPAI on waterfowl and how this emerging disease spreads at continental scales, across species, and potentially between wildlife and domestic animals.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Estações do Ano , Patos , Animais Selvagens , América do Norte/epidemiologia
5.
Glob Chang Biol ; 28(18): 5469-5479, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656733

RESUMO

Global climate change is increasing the frequency and severity of extreme climatic events (ECEs) which may be especially detrimental during late-winter when many species are surviving on scarce resources. However, monitoring animal populations relative to ECEs is logistically challenging. Crowd-sourced datasets may provide opportunity to monitor species' responses to short-term chance phenomena such as ECEs. We used 14 years of eBird-a global citizen science initiative-to examine distribution changes for seven wintering waterfowl species across North America in response to recent extreme winter polar vortex disruptions. To validate inferences from eBird, we compared eBird distribution changes against locational data from 362 GPS-tagged Mallards (Anas platyrhynchos) in the Mississippi Flyway. Distributional shifts between eBird and GPS-tagged Mallards were similar following an ECE in February 2021. In general, the ECE affected continental waterfowl population distributions; however, responses were variable across species and flyways. Waterfowl distributions tended to stay near wintering latitudes or moved north at lesser distances compared with non-ECE years, suggesting preparedness for spring migration was a stronger "pull" than extreme weather was a "push" pressure. Surprisingly, larger-bodied waterfowl with grubbing foraging strategies (i.e., geese) delayed their northward range shift during ECE years, whereas smaller-bodied ducks were less affected. Lastly, wetland obligate species shifted southward during ECE years. Collectively, these results suggest specialized foraging strategies likely related to resource limitations, but not body size, necessitate movement from extreme late-winter weather in waterfowl. Our results demonstrate eBird's potential to monitor population-level effects of weather events, especially severe ECEs. eBird and other crowd-sourced datasets can be valuable to identify species which are adaptable or vulnerable to ECEs and thus, begin to inform conservation policy and management to combat negative effects of global climate change.


Assuntos
Ciência do Cidadão , Clima Extremo , Animais , Mudança Climática , Patos/fisiologia , Estações do Ano , Tempo (Meteorologia)
6.
PLoS One ; 15(2): e0228980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084190

RESUMO

Marsh birds (rallids, bitterns, and grebes) depend on emergent wetlands, and habitat loss and degradation are the primary suspected causes for population declines among many marsh bird species. We evaluated the effect of natural wetland characteristics, wetland management practices, and surrounding landscape characteristics on marsh bird occupancy in Illinois during late spring and early summer 2015-2017. We conducted call-back surveys following the North American Standardized Marsh Bird Survey Protocol three times annually at all sites (2015 n = 49, 2016 n = 57, 2017 n = 55). Across all species and groups, detection probability declined 7.1% ± 2.1 each week during the marsh bird survey period. Wetlands managed for waterfowl (ducks, geese, and swans) had greater occupancy than reference wetlands. Marsh bird occupancy increased with greater wetland complexity, intermediate levels of waterfowl management intensity, greater proportions of surface water inundation, and greater proportions of persistent emergent vegetation cover. Wetland management practices that retain surface water during the growing season, encourage perennial emergent plants (e.g., Typha sp.), and increase wetland complexity could be used to provide habitat suitable for waterfowl and marsh birds.


Assuntos
Áreas Alagadas , Animais , Aves , Conservação dos Recursos Naturais , Ecossistema , Estações do Ano , Estados Unidos
7.
Parasitol Res ; 117(6): 1877-1890, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29696395

RESUMO

Thousands of lesser scaup (Aythya affinis) die during spring and fall migrations through the upper Midwest, USA, from infections with Cyathocotyle bushiensis and Sphaeridiotrema spp. (Class: Trematoda) after ingesting infected intermediate hosts, such as non-native faucet snails (Bithynia tentaculata). The lesser scaup is a species of conservation concern and is highly susceptible to these infections. We collected female lesser scaup from spring migratory stopover locations throughout Illinois and Wisconsin and assessed biochemical and morphological indicators of health in relation to intestinal helminth loads. Helminth species diversity, total trematode abundance, and the infection intensities of the trematodes C. bushiensis and Sphaeridiotrema spp. were associated with percent body fat, blood metabolites, hematological measures, and an index of foraging habitat quality. Helminth diversity was negatively associated with percent body fat, albumin concentrations, and monocytes, whereas glucose concentrations displayed a slight, positive association. Total trematode abundance was negatively associated with blood concentrations of non-esterified fatty acids and albumin. Infections of C. bushiensis were positively related to basophil levels, whereas Sphaeridiotrema spp. infection intensity was negatively associated with packed cell volume and foraging habitat quality. Thus, commonly measured health metrics may indicate intestinal parasite infections and help waterfowl managers understand overall habitat quality. Intestinal parasitic loads offer another plausible mechanism underlying the spring condition hypothesis.


Assuntos
Patos/parasitologia , Helmintíase/parasitologia , Enteropatias Parasitárias/parasitologia , Carga Parasitária , Trematódeos/classificação , Trematódeos/isolamento & purificação , Infecções por Trematódeos/parasitologia , Migração Animal , Animais , Basófilos/imunologia , Glicemia/análise , Distribuição da Gordura Corporal , Ecossistema , Ácidos Graxos/sangue , Feminino , Albumina Sérica/análise , Caramujos/parasitologia , Estados Unidos
8.
PLoS One ; 10(3): e0118349, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790255

RESUMO

Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and suggest scientists reevaluate assumptions of these models used to guide habitat conservation.


Assuntos
Anseriformes , Conservação dos Recursos Naturais , Ecossistema , Modelos Biológicos , Animais , Alimentos , Estações do Ano , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...